高一数学必背知识点1 1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一下面是小编为大家整理的高一数学必背知识点3篇,供大家参考。
高一数学必背知识点1
1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数的定义域,与x相对应的y的值叫做函数值,函数值的集合B={f(x)∣x∈A }叫做函数的值域。
2、函数定义域的解题思路:⑴若x处于分母位置,则分母x不能为0。⑵偶次方根的被开方数不小于0。⑶对数式的真数必须大于0。⑷指数对数式的底,不得为1,且必须大于0。⑸指数为0时,底数不得为0。⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。⑺实际问题中的函数的定义域还要保证实际问题有意义。
3、相同函数⑴表达式相同:与表示自变量和函数值的字母无关。⑵定义域一致,对应法则一致。
4、函数值域的求法⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。⑵图像法:适用于易于画出函数图像的函数已经分段函数。⑶配方法:主要用于二次函数,配方成y=(x—a)2+b的形式。⑷代换法:主要用于由已知值域的函数推测未知函数的值域。
5、函数图像的变换⑴*移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。⑵伸缩变换:在x前加上系数。⑶对称变换:高中阶段不作要求。
6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。⑵集合A中的不同元素,在集合B中对应的象可以是同一个。⑶不要求集合B中的每一个元素在集合A中都有原象。
7、分段函数⑴在定义域的不同部分上有不同的解析式表达式。⑵各部分自变量和函数值的取值范围不同。⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。8、复合函数:如果(u∈M),u=g(x)(x∈A),则,y=f[g(x)]=F(x)(x∈A),称为f、g的复合函数。
高一数学必背知识点2
1、“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2、“相等”关系:A=B(5≥5,且5≤5,则5=5)
实例:设A={x|x2—1=0}B={—1,1}“元素相同则两集合相等”
即:①任何一个集合是它本身的子集。AA
②真子集:如果AB,且AB那就说集合A是集合B的真子集,记作AB(或BA)
③如果AB,BC,那么AC
④如果AB同时BA那么A=B
3、不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4、子集个数:
有n个元素的集合,含有2n个子集,2n—1个真子集,含有2n—1个非空子集,含有2n—1个非空真子集
高一数学必背知识点3
第一章:空间几何
三视图和直观图的绘制不算难,但是从三视图复原出实物从而计算就需要比较强的空间感,要能从三张*面图中慢慢在脑海中画出实物,这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和*面图结合起来看,先熟练地正推,再慢慢的逆推(建议用纸做一个立方体来找感觉)。
在做题时结合草图是有必要的,不能单凭想象。后面的锥体、柱体、台体的表面积和体积,把公式记牢问题就不大。
第二章:点、直线、*面之间的位置关系
这一章除了面与面的相交外,对空间概念的要求不强,大部分都可以直接画图,这就要求学生多看图。自己画草图的时候要严格注意好实线虚线,这是个规范性问题。
关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、*行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。只要这些全部过关这一章就解决了一大半。这一章的难点在于二面角这个概念,大多同学即使知道有这个概念,也无法理解怎么在二面里面做出这个角。对这种情况只有从定义入手,先要把定义记牢,再多做多看,这个没有什么捷径可走。
第三章:直线与方程
这一章主要讲斜率与直线的位置关系,只要搞清楚直线*行、垂直的斜率表示问题就错不了。需要注意的是当直线垂直时斜率不存在的情况是考试中的常考点。另外直线方程的几种形式所涉及到的一般公式,会用就行,要求不高。点与点的距离、点与直线的距离、直线与直线的距离,只要直接套用公式就行,没什么难点。
第四章:圆与方程
能熟练地把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。通过点到点的距离、点到直线的距离、圆半径的大小关系来判断点与圆、直线与圆、圆与圆的位置关系。另外注意圆的对称性引起的相切、相交等的多种情况,自己把几种对称的形式罗列出来,多思考就不难理解了。