下面是小编为大家整理的小学四年级数学下册知识点汇总3篇,供大家参考。
小学四年级数学下册知识点汇总3篇2
第一单元 对称、平移和旋转
1、画图形的另一半:
(1)找对称轴。
(2)找对应点。
(3)连成图形。
2、正三边形(等边三角形)有3条对称轴,正四边形(正方形)有4条对称轴,正五边形有5条对称轴,……正n变形有n条对称轴。
3、对角线是一条线段,对称轴是一条直线。
4、图形的平移,先画平移方向,再把关键的点平移到指定的地方,最后连接成图。
5、旋转三要素:旋转中心、旋转方向、旋转角度。
6、图形的旋转,先找中心点,再把关键的边旋转到指定的地方,(注意方向和角度)再连线。
7、平移和旋转不改变图形的形状和大小,只是改变图形的位置。
8、与时针旋转方向相同的是顺时针旋转,与时针旋转方向相反的是逆时针旋转。
9、把一个图形沿一条直线对折后,折痕两边完全重合的图形叫做轴对称图形,折痕所在的直线叫做对称轴。
10、所学图形中是轴对称图形:有1条对称轴有等腰三角形和等腰梯形;
有2条对称轴是长方形;
有3条对称轴是等边三角形;
有4条对称轴是正方形;
有无数条对称轴是圆。
第二单元 多位数的认识
1、数位顺序表
我国计数是从右起,每4个数位为一级;
国际计数是每3个为一节。
2、数位、计数单位和数级
把计数单位按一定的顺序排列起来,它们所在的位置,叫作数位。
计数单位有:个、十、百、千、万、十万、百万、千万、亿、十亿、百亿、千亿。
从个位起,每四个数位是一级,一共分为个级、万级、亿级。
3、每相邻两个计数单位之间的关系
10个一万是十万;
10个十万是一百万;
10个一百万是一千万;
10个一千万是一亿。每相邻的两个计数单位之间的进率都是10,这种计数方法叫十进制计数法。
4、多位数的读法
从高位读起,一级一级地往下读。读亿级或万级的数,先按照个级的读法读,再在后面加上一个“亿”字或“万”字。每级中间有一个0或连续几个0,都只读一个零;
每级末尾的零都不读。
5、多位数的写法
先写亿级,再万级,最后写个级,哪个数位上一个单位也没有,就在那一位上写0。
6、复习数的改写及省略。
改写:可以将万位、亿位后面的4个0、8个0省略,换成“万”或“亿”字,这样就将整万或整亿的数改写成用“万”或“亿”作单位的数。
省略:省略时一般用“四舍五入”的方法。是“舍”还是“入”,要看省略部分的尾数最高位是小于5、等于5还是大于5。
7、多位数比较大小
位数不同,位数多的数就大;
位数相同,左起第一位的数大的那个数就大;
如果左起第一位上的数相同,就比较左起第二位上的数。
第三单元 三位数乘两位数
1、三位数乘两位数,所得的积不是四位数就是五位数。
2、三位数乘两位数
先用两位数的个位上的数与三位数的每一位相乘,乘得的积和个位对齐,再用两位数十位上的数与三位数的每一位相乘,所得的积和十位对齐,最后把两次乘得的积相加。
3、末尾有0的乘法计算方法
先把两个乘数不是零的部分相乘,再看两个乘数末尾一共有几个零,就在积的末尾加几个零。
第四单元 用计算器探索规律
1、积的变化规律
①一个因数缩小几倍,另一个因数扩大相同的倍数,积不变。
②一个因数缩小(或扩大几倍),另一个因数不变,积也随着缩小(或扩大)几倍。
2、商的变化规律
①被除数和除数同时扩大(或缩小)相同的倍数,(0除外),商不变。(余数会变)
②被除数扩大(或缩小)几倍,除数不变,商也随之扩大(或缩小)几倍。
③被除数不变,除数缩小几倍(0除外),商反而扩大几倍
第五单元 解决问题的策略
1、已经两个数的和(即两个数一共是多少),两个数的差(即一个数比另一个数多多少),求这两个数。
解法:①(和-差)÷2=小的数 小的数+差=大的数
②(和+差)÷2=大的数 大的数-差=小的数
2、已经两个数的和(即两个数一共是多少),大数拿若干个给小数,这样两个数一样多,求这两个数。
思路:大数拿若干个给小数,大数应该比小数多拿走数量的2倍。(请注意和两个数的差区别开来)
3、一个数是另外一个数的几倍,把大数拿一些给小数,这样两个数一样多。
思路:应该先画出线段图,看大数应该拿多的倍数的一半,两个数一样多,再看一半倍数所对应的量是多少个,从而先求出一倍的量(一般情况下是小数),再求出大数。
4、已知长或宽增加了多少米,面积就增加了多少平方米,求现在或原来的面积。
思路:首先应该画出示意图。
可以先根据增加的面积和长或宽增加的米数,先求小长方形的长或宽(也就是原来图形的宽或长),然后再考虑求什么的面积,可以根据面积公式直接求或图形间的面积关系间接求,方法要灵活多变。
5、已知长或宽减少了多少米,面积就减少了多少平方米,求现在或原来的面积。
思路:首先应该画出示意图。
可以先根据减少的面积和长或宽减少的米数,先求小长方形的长或宽(也就是原来图形的宽或长),然后再考虑求什么的面积,可以根据面积公式直接求或图形间的面积关系间接求,方法要灵活多变。
第六单元 运算律
1、加法运算定律
①加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a
②加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;
或者先把后两个数相加,再加上第一个数,和不变。
(a+b) +c=a+(b+c)
③加法交换律与结合律往往结合起来一起使用。
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)
3、乘法运算定律
①乘法交换律:两个数相乘,交换因数的位置,积不变。
a×b=b×a
②乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
(a×b) ×c=a×(b×c)
乘法交换律和乘法结合律往往结合起来一起使用。
③乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。
(a+b)×c =a×c + b×c(合起来乘等于分别乘)
(a-b)×c =a×c - b×c
4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。(结合连减)
a÷b÷c=a÷(b×c)
第七单元 三角形、平行四边形和梯形
一、三角形
1、围成三角形的条件
较短两条边的长度之和一定大于第三条边,两边之差小于第三边。
2、三角形的底和高
从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底。
3、三角形具有稳定性
当一个三角形的三条边的长度确定后,这个三角形的形状和大小都不会改变。
4、按角将三角形分类
三个角都是锐角的三角形是锐角三角形。
有一个角是直角的三角形是直角三角形。
有一个角是钝角的三角形是钝角三角形。
5、任意一个三角形至少有两个锐角,都有三条高,三角形的内角和都是180度。
6、等腰三角形
两条边相等的三角形是等腰三角形,相等的两条边叫做腰。
另外一条边叫做底,两条腰的夹角叫做顶角,底和腰的两个夹角叫做底角,它的两个底角也相等。
等腰三角形是轴对称图形,有一条对称轴
7、等边三角形
三条边都相等的三角形是等边三角形,三条边都相等,三个角也都相等(每个角都是60°,所有等边三角形的三个角都是60°。)
二、平行四边形和梯形
1、平行四边形
两组对边互相平行的四边形叫平行四边形。
(1)它的对边平行且相等,对角相等。
(2)从一个顶点向对边可以作两种不同的高。一个平行四边形有无数条高。
(3)平行四边形容易变形,具有不稳定性。
(4)把平行四边形拉成一个长方形,周长不变,面积变了。
2、梯形
只有一组对边平行的四边形叫梯形。
(1)平行的一组对边较短的叫做梯形的上底,较长的叫做梯形的下底,不平行的一组对边叫做梯形的腰,两条平行线之间的距离叫做梯形的高(无数条)。
(2)两条腰相等的梯形叫等腰梯形,它的两个底角相等,是轴对称图形,有一条对称轴。直角梯形有且只有两个直角。
第八单元 确定位置
1、通常把竖排叫作列,横排叫作行。一般情况下,从左向右数确定第几列,从前向后数确定第几行。
2、数对中的第一个数表示第几列,第二个数表示第几行,两个数之间要用逗号隔开,两个数要用小括号括起来。如:(4,3)表示第4列第3行或者说第3行第4列。
3、身份证从左往右第1——6位表示地区,第7——14位表示出生年月日,第15——17位表示编码,第18位是识别码。其中第17位上单数表示男性,双数表示女性。
抽象座位表,认识数对
对数称为数对。(注意先写列后写行)