欢迎来到专业的万有范文网平台! 工作总结 工作计划 心得体会 思想汇报 述职报告 教案设计 整改报告 事迹材料
当前位置:首页 > 范文大全 > 公文范文 > 正文

2023年度考研数学概率部分考察特点(范例推荐)

时间:2023-03-01 17:00:06 浏览量:

下面是小编为大家整理的2023年度考研数学概率部分考察特点(范例推荐),供大家参考。

2023年度考研数学概率部分考察特点(范例推荐)

考研数学概率部分考察的特点1

  第一,理解并牢记导数定义。导数定义是考研数学的出题点,大部分以选择题的形式出题,01年数一考一道选题,考查在一点处可导的充要条件,这个并不会直接教材上的导数充要条件,他是变换形式后的,这就需要同学们真正理解导数的定义,要记住几个关键点:

  1)在某点的领域范围内。

  2)趋近于这一点时极限存在,极限存在就要保证左右极限都存在,这一点至关重要,也是01年数一考查的点,我们要从四个选项中找出表示左导数和右导数都存在且相等的选项。

  3)导数定义中一定要出现这一点的函数值,如果已知告诉等于零,那极限表达式中就可以不出现,否就不能推出在这一点可导,请同学们记清楚了。

  4)掌握导数定义的不同书写形式。

  第二,导数定义相关计算。这里有几种题型:1)已知某点处导数存在,计算极限,这需要掌握导数的广义化形式,还要注意是在这一点处导数存在的前提下,否则是不一定成立的。

  第三,导数、可微与连续的.关系。函数在一点处可导与可微是等价的,可以推出在这一点处是连续的,反过来则是不成立的,相信这一点大家都很清楚,而我要提醒大家的是可导推连续的逆否命题:函数在一点处不连续,则在一点处不可导。这也常常应用在做题中。

  第四,导数的计算。导数的计算可以说在每一年的考研数学中都会涉及到,而且形式不一,考查的方法也不同。要能很好的掌握不同类型题,首先就需要我们把基本的导数计算弄明白:1)基本的求导公式。指数函数、对数函数、幂函数、三角函数和反三角函数这些基本的初等函数导数都是需要记住的,这也告诉我们在对函数变形到什么形式的时候就可以直接代公式,也为后面学习不定积分和定积分打基础。2)求导法则。求导法则这里无非是四则运算,复合函数求导和反函数求导,要求四则运算记住求导公式;复合函数要会写出它的复合过程,按照复合函数的求导法则一次求导就可以了,也是通过这个复合函数求导法则,我们可求出很多函数的导数;反函数求导法则为我们开辟了一条新路,建立函数与其反函数之间的导数关系,从而也使我们得到反三角函数求导公式,这些公式都将要列为基本导数公式,也要很好的理解并掌握反函数的求导思路,在13年数二的考试中相应的考过,请同学们注意。3)常见考试类型的求导。通常在考研中出现四种类型:幂指函数、隐函数、参数方程和抽象函数。这四种类型的求导方法要熟悉,并且可以解决他们之间的综合题,有时候也会与变现积分求导结合,94年,96年,08年和10年都查了参数方程和变现积分综合的题目。

  第五,高阶导数计算。高阶导数的计算在历年考试出现过,比如03年,07年,10年,都以填空题考查的,00年是一道解答题。需要同学们记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。这里还有一种题型就是结合莱布尼茨公式求高阶导数的,00年出的题目就是考察的这两个知识点。


考研数学概率部分考察的特点扩展阅读


考研数学概率部分考察的特点(扩展1)

——考研数学概率部分考察有哪些特点 (菁选2篇)

考研数学概率部分考察有哪些特点1

  1、与高等数学联系紧密

  概率论与数理统计这门学科与高等数学的联系是非常紧密的,因为对于我们在求概率、期望、方差等变量时都需要用到高数中的相关知识,包括极限、导数、定积分与二重积分等,所以大家要想学好概率论这门学科,就要先学好高数的相关知识。但是大家也不用担心,因为这部分用到的高数知识都是比较简单的,大家只要掌握了这部分的基本知识以及基本求导数、求积分的方法就可以了。

  2、偏计算,公式繁多

  概率论这门学科在考研数学中主要考查大家的就是计算,大家只要会算各种情况下概率、期望、方差等就可以了。但是对于概率论这个学科而言,如果大家要计算,就需要去记住很多公式,只有把相关的公式全记住了在考试中对于不同的情况才能选取合适的公式。

  3、与实际联系紧密

  概率论这个学科相对于高等数学和线性代数这两个学科而言,它与我们的生活联系是比较紧密的,比如说抽签或者买票中奖的概率体现出的抽签原理等。因为这个特点,概率论在考试中一般都是与实际问题结合起来考查大家,这时就需要大家能够先抽象出概率学表达式,然后再代入合适的公式去求解。

考研数学概率部分考察有哪些特点2

  ▶微积分

  极限函数和连续性这一部分内容来讲,高频的考题是什么呢?那就是未定式的极限。我们说,对于像幂指函数这样的未定式的极限,它是重点考查的内容。它就是高频的考点。

  还会有其他的求极限的方法,比如说利用定积分的定义,像中值定理来进行极限的计算,这样的内容虽然它未必是高频的考题,但是我们也一定要进行重视。也就是说它会偶尔进行出现。

  像一元函数的微分学,求导运算它是微积分的基础,也是考查的重点内容。在各类函数的求导问题当中,高频的考点比如说像隐函数求导,像数学一和数学二由参数方程所确定的函数的导数,像分段函数的可导性,它的考查这些都是高频的考题。

  像幂指函数的求导、复合函数的求导,它也会偶尔进行考查。

  再比如一元函数微分学的应用,每年是必考的内容,像研究函数的性态,比如说函数单调性、极值、最值和凹凸性,相比而言像极值和最值的问题,就是绝对高频的考点,几乎年年都要进行考查。

  但是像对于凹凸性这样的问题,我们也不能忽视。也就是说,我要掌握了描述函数图形的各类的这样的步骤和方法,对于这类的问题我们就可以迎刃而解。像这些问题的延伸问题,比如说利用单调性、凹凸性、极值和最值来证明不等式,我们就要掌握这类问题的常规的解题模式和方法。向来研究方程根的个数问题,每隔几年也要进行考查。

  像一元函数积分学,这里面的高频内容就是积分上限函数。伴随这积分上限函数,它就会一定有求导的过程。这样的话,对于积分上限函数,它就是高频的考题。我们就要重点掌握它的求导运算。但是对于积分的一般的运算,我们也不能忽视,所以高频和低频是相对而言的。

  像多元函数微分学,它的应用当中,极值和条件极值就是重点考查的内容。而对于偏导运算,几乎每年要进行考查。对于数学一而言,方向导数和梯度,它就会偶尔进行考查。

  像多元函数的积分学,像二次积分,几乎每年都会出解答题。对于曲线和曲面积分,一般也是以解答题的形式出现,这样对于数学已的考生就要重点掌握。

  ▶线性代数

  我们应该重点掌握,像矩阵、向量和向量组,还有线性代数方程组,它们这些问题之间的相互关系,和之间的相互研究,只要我们把这个问题研究清楚了,无论题型怎么变换,无论题怎么样的角度来变换,我们都能够很好的进行解答。

  ▶概率论和数理统计

  哪些是高频的考点,在考试大纲中也明确的.为大家进行了分析。比如说实际上概率的核心问题就是三个问题:一,事件的概率怎么样来进行计算;二,就是随机变量它的分布如何来求取;三,就是随机变量的数字特征。无论怎么样来进行命题,这三个校对都是重点考查的内容。所以根据考试大纲解析,我们能够明确这些高频的考点,我们就掌握了80%的分量。


考研数学概率部分考察的特点(扩展2)

——考研数学概率部分考察的特点有哪些

考研数学概率部分考察的特点有哪些1

  第一个“识”,就是我们要把考试大纲重头到尾进行梳理一下。我们要对大纲要求的知识,要进行识记,并且要熟练记忆。

  这个第一关,看似是最简单最基础,实际上是最难的。对于多数的考生而言,第一关往往是造成失败的主要原因。

  比如说数学一,由于考点要求的很多,很多考点,我们主要是记住了它的概念,这样的问题就会迎刃而解。我们不会的原因,并不是因为我们自身的能力不强或者是不够聪明。主要是对这部分内容,我们识记没有过。我们没有记住这些基本的概念和原理。

  第二个,就是要“全”,进行全面复习,不留死角。这个建议,主要是针对数学一同学而言的。那也就是说,从2016年的考试情况来看的话,如果我们盲目的猜重点,猜测考点,自己来揣摩哪些地方不考,我们就忽视了,而这些问题,恰恰就会考查出来。所以在后面有限的时间段里面,我们要进行全面的复习。对于*时没有掌握的遗留问题,要进行重点突破。

  第三个“识”,就是辨识能力,这个是个质的飞跃,一个能力提升的过程。辨识能力是数学的高层次,也就是说,我们能够识别这个问题是个什么样的问题。像概率里面,数学三独立重复实验。它是伯努利概型,还是几何分布,还是帕斯卡分布。

  第四个“美”,就是最高的阶段。很多数学家,他是把数学上升为美学,这是一个哲学范畴的一个概念。就是我们这个试卷,是要解答规范,形式要美观。从去年的阅卷情况来看,在批阅试卷的过程当中,我们在这个试卷里面反映的问题是非常突出的。主要在试卷中体现的问题有几个方面。

  第一个方面,就是时间很仓促。很多同学明显看出来最后的题,解答没有时间了,字迹很潦草。因此在解答试卷的.过程当中,我们每个部分要注意时间的分配。

  第二个,就是突出的问题,基本概念不清楚。比如说,去年的概率论,这样一个问题,第一问呢,是告诉我们二维随机变量,在一个区域上服从均匀分布,要我们写出它的联合概率密度,所以考生都知道注意这个面积是3,但是就会有一半的考生不会把这个面积倒过来,得到联合概率密度。其实这样的问题,根本不是一个很难的问题,我们只要能够把这个面积倒过来,就会获得联合概率密度。所以,第二个问题,就体现了基本概念不清楚。

  第三个问题,在最后这一阶段,很多同学因为数学的难度,对自己没有信心,想要放弃数学,或者是避开数学,其实数学是能够获得高分,使自己与其他人拉开差距的一个中坚力量,也就是说,得数学者可以得天下,如果数学成绩好,他所占有的优势是极巨大的。所以,我们要相信自己的能力,我们数学要尽力争取高分。


考研数学概率部分考察的特点(扩展3)

——考研数学概率部分全年的规划

考研数学概率部分全年的规划1

  一,调整心态,稳扎稳打

  就老师现在辅导的学生的情况而看,很多学生反映最近似乎很疲惫,心情也很焦虑,感觉越是临近考试越是学不进去,焦虑的原因是每一科目都觉得复习得不好,估计考不上。这一胡思乱想反而使得我们休息的时候休息不好,学习的时候学习效率也很低,脑子很木,想一道题目的时候感觉之前熟练的东西,现在感觉也不会做了。

  这个时候,建议大家适当放松一下,进行一*育锻炼,或是在校园里溜达溜达,晒晒太阳,放松一下心情,甚至和朋友或亲人多沟通沟通,从他们那里得到一些安慰和信心。其实对于每个考生来说,每一个都有一定压力,我们都想打败别人而立于不败之地,所以这个时候,我们更得具有良好的心理素质。

  我们还是按之前的生活习惯进行即可,该休息的时候就休息,该学习的时候就学习。我们休息好了,心态也不错的话,那我们的学习效率也不会差的,这样会有利于我们的备考的。

  二,以真题为主,进行巩固复习

  现在很多同学还在做大量的模拟题,这是错误的复习做法。因为大部分模拟题都偏难。一方面会导致我们会为自己的水*担忧,因为模拟测试的分数偏低;另一方面会导致我们题型的方向和难度把握不好。

  所以在这最后的时间里,建议大家还是以真题为主,我之前做过的真题中,出现的错题或是半路卡壳的"题目自己在认认真真重新做一遍这样会检验我们到底有没有对应的知识点或是方法。若是掌握了那就甚好,若是没掌握了,咱们对应的就找一些专项题目再进行练习一下。

  三,每天坚持动手做题

  数学切忌光看不做,即使在最后的时间里,同学们应该明天也要坚持做题目。一方面是把我们之前学习过的知识点和方法巩固起来,另一方面也是给自己打一针安心计。我们每天练习着,总感觉自己心里很有底,否则的话长时间不看,自己都感觉会忘记一些知识。


考研数学概率部分考察的特点(扩展4)

——考研数学概率冲刺的复习建议 (菁选2篇)

考研数学概率冲刺的复习建议1

  1.课程全面复习

  按照考试大纲上的内容与要求进行复习,复习时做到不遗漏、不超纲。考试命题以考试大纲为唯一命题依据,而不是以教学大纲为基础,所以课本上没有的、而考试大纲上有的内容,考生一定得补上。考试大纲对各个知识点的要求是不一样的,有的是掌握、理解,有的是了解、会用,对于要求是掌握和理解的内容要重点复习,相应的定理结论,不仅要会用,还要弄清楚证明过程;对于要求是了解、会用的内容,只要会用就可以了。

  2.重视基础知识

  概率统计试题最大的特点同样是重视“三基”的考查,该部分内容的考察会占到整个考点的80%,所以2017年的考生们要将基础知识的复习贯穿到整个复习过程中。

  3.加深课程理解

  做题后的归纳总结比做题花的时间更多才会更有收获,不要盲目的搞题海战术,概率统计这门课程其实变化是相对较少的,因此我们只要掌握最基本、有效的知识和方法即可。选择题,主要考查基本概念和基本方法,利用基本概念和基本方法进行推理、判断和计算,解答该形式的题目一般有两种方法,直接法和排除法,特别是排除法,若使用得当,可以节省很多时间。

  4.重视真题题型

  概率统计的考试内容和技巧比较单一,在考研真题题型中的重复率达到90%,所以认真做历年真题是至关重要的,20xx年以后的真题参考价值更高。做真题可以分两步:第一步,逐套做,这样可以检验自己的复习水*,发现概念上不熟悉的地方,另外为真正的考试积累经验;第二步,按章做,在第一步时,有些题目可能会做错,把这些题目记录下来,在各个章节中再专题性的做,以便强化知识和方法。最后把近十年的考试题目系统的研究下,整理出常考内容,彻底熟悉考试题型,并且做到能够正确解答。切记我们无需花时间去理解其它无关或者非重点内容。

  5、冲刺阶段战略

  冲刺阶段是备考的最后一个月,这段时间考生要重温一遍基本教材,查遗补漏,将知识条理化、系统化。同时,我们还可以做八套左右难度适中的模拟题,千万不要做太难太偏的模拟题,不然不仅会做无用功甚至会对参考失去信心,更起不到锻炼的价值。

考研数学概率冲刺的复习建议2

  首先,考研冲刺同学们要注意多做一些数学的真题和模拟题。

  大家一定要注意做一些数学的真题和模拟题,因为数学长期的或者说几周的时间不看,很容易遗忘,另外做题的手感和状态都会差很多,所以目前很多同学都感觉前面的复习已经比较充分,该做的题也都做过了,但是一定要认识到,数学的学科它本身的特点就是这样的,长时间的不做题,最后上场的话,很多题目原来会做的也想不起来,另外也不利于大家最后去发挥,很多同学关心今年研究生考试试题的难度还有计算量的大小。

  由于连续四年教育部考试中心,数学的考试大纲连续四年都没有变化,所以它的重点、难点、侧重点应该和前三年的考试是持*的,也就是说难度和以前是一样的,这样希望同学这段时间可以把前三年考过的研究生考试的试题、真题,大家在自己做一遍,另外适当的、封闭的大家做一下冲刺题和模拟题,不宜过多,除了真题以外,模拟题做两套三套即可。

  做模拟题的最大的作用就是查缺补漏,另外增加实践的经验,自己在考前分配好具体的答题的时间,有的同学感觉冲刺题、模拟题答的分数不是很高,如果出现这样的情况,希望大家要保持信心,不要灰心丧气,因为冲刺题、模拟题它的水*,它的难度、针对性都不如历年研究生考试真题,可以说真题,数学考研的真题是最好的复习资料,水*也最高,很多同学以前把真题已经做了非常充分的复习和准备,可以再把做过的题目再做一遍,再做几套模拟题,就是查缺补漏,这个很有必要。

  做模拟题如果同学分数答的"很高,也没有必要洋洋自得,因为考试的时候还有一个临场发挥的问题,所以那保持心态,特别是最后这一个月的正常的复习备考的心态非常重要。

  重视答题的效率,不要钻研偏难问题

  另外一个问题就是计算量的问题,连续四年数学考试的真题都没有太多的变化,这样今年一定要重视答题的效率,也就是说计算量老师是可以调整的,有的题目计算起来难度不大,但是非常费时间,希望大家在做模拟题和真题,进行模拟训练的时候要合理的分配答题的时间,一个就是填空题、选择题,这是前面两道大题,一共14道小题,前两道大题的答题时间尽量的控制在50分钟之内,有一些选择题是概念性的,概念性比较强,也比较好做,但是有一些选择题是很难对付的,对于这些难缠的、不好做的选择题,希望同学在答题的时候不要过于纠缠在里面,不要钻牛角尖,可以放一放,先做后面的计算题。这样就能保证考试的进度会比较快。

  另外,线性代数是考研数学必考的题目包括解方程组、特征值特征向量和二次型,概率统计里面必考的内容,也就是大题包括二维随机变量,它的数字特征、数学期望、方差、协方差、相关系数,数理统计很多同学比较欠缺,也可以肯定的说,数学一和数学三今年必须要准备考察一个数理统计的大题,主要是两个题型,一个就是所谓的统计量的分布问题,特别是三大抽样分布,T分布、卡方分布、F分布的问题。还有另外一种典型的题目,就是点估计,包括求据估计量和最大自然估计量,希望每位同学把刚才说的这三个科目后面的大题这个重点要加强。

  加强这些重点的一个重要方法,就是套用公式,进行化减,套用公式一个是记忆的问题,公式要反复的在考前进行加强记忆,另外一个套用公式是必须要遵循严格的已知条件和严格的解题程序,没有条件就没有结论,所以套用公式一定要非常慎重的检查题目的条件,然后才能得出相应的结论。

  解题程序,根据具体情况决定解题思路

  解题程序对很重要,你比如求切线的方程,这是最简单的问题,套用切线的公式就可以了,第一步要求出切点的坐标,第二步要求出切线的斜率,就是求出导数,然后才能代入切线的公式,就比如接线性方程组的问题,第一步应该写出解方程组,它是否有接,唯一解,多穷多解的充要条件,充要条件写出来之后,再按照充要条件决定解题步骤,如果非线性方程组大家可以考虑先求特解,再求对应的导出组,它的通解,基础解析,这样做题还有章法,不至于东一榔头,西一下子,最后做题很被动,而且耽误时间,思路不清。

  这是大家最后这个阶段总结提高,归纳、巩固原来学过的东西,都是大家应该注意的。还有一个重要的问题,就是很多同学担心,今年是否考应用题,高等数学的应用题在去年的研究生考试里是出现的,数学一和数学二考察了微积分在物理里面的应用,特别是定积分在物理里面的应用,经济类、管理类、数学三也考察了定积分在几何上的应用。

  另外一个定积分在微积分,也就是在经济学上的应用,大家特别要注意,其中微分方程和实际问题相结合,建立微分方程、解微分方程历来是研究生考试里面的一个重点,今年也要特别关注。其中建立微分方程和求面积、求体积、定积分的应用相结合很重要,二重积分也可以和微分方程相结合,所以研究的应用题包括实际应用和几何应用,这两方面的应用题希望大家结合以前的研究生考试的真题来进行复习,进行加强。

  另外一个,大家做模拟题的过程中,要注意把整张数学试卷要通览一遍,有些题目大家非常熟悉,占的分值也比较高,就可以先把它做出来,还有一些题目同学认为难度不大,自己很有把握,也可以提前先做,把后面的一些比较难的题目放一放,但是也要做,不能东做一道题西做一道题,最后都没有做完的,要求做一道题就要做对,做完整,不然的话会影响总体的分值。

  做证明题也好,做计算题也好,都会有一个思路的问题,还有任何一个数学题,中间都有一个转折点,也就是拐弯的地方或者叫卡壳的地方,如果做不下去,这个题解决不了怎么办,最后这一个月的时间恰恰能起到非常关键的作用,一个就是要注意归纳、总结,原来做过的题目,时间长了也会容易遗忘,希望大家认真的看一看原来是怎么做的,把过去看过的考研参考书,老师讲的暑气真题的一些解题的方法,还有强化班的难度比较大的解题的方法,大家要进行归纳、总结。


考研数学概率部分考察的特点(扩展5)

——考研数学线性代数考察的规律分析

考研数学线性代数考察的规律分析1

  ▶考研数学线性代数相比较高等数学和概率论而言,呈现明显不同的学科特点——概念多、定理多、符号多、运算规律多、内容纵横交错以及知识点前后紧密联系。

  如果说高等数学的知识点算“条”的话,那么概率论就应该算“块”,而线性代数就是“网”!具体来看,线性代数这整张网,又是由行列式、矩阵、向量、线性方程组、特征值与特征向量以及二次型这6张小网相互交叉联结而成。而其中向量和线性方程组这两张网又在其中起着承前启后、上下衔接的关键作用。

  通过上面的分析,大家是不是发现——向量和线性方程组是线性代数的重难点内容,也是考研的重点和难点之一?这一点也可以从历年真题的出题规律上得到验证。

  关于第三章向量,无论是大题还是小题都特别容易出考题,06年以来每年都有一道考题,不是考察向量组的线性表示就是向量组的线性相关性的判断,10年还考了一道向量组秩的问题。

  关于第四章线性方程组,06年以来只有11年没有出大题,其他几年的考题均是含参方程的求解或者是解的判定问题。

  考研数学线性代数暑期强化复习阶段重点应放在充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法上,并及时进行总结,抓联系,使所学知识能融会贯通,举一反三。

  ▶向量—理解相关无关概念,灵活进行判定

  向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。如何掌握这部分内容呢?首先在于对定义、性质和定理的理解,然后就是分析判定的关键在于:看是否存在一组不全为零的实数。

  这部分题型有如下几种:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的.命题(数一)。

  要判断(证明)向量组的线性相关性(无关性),首先会考虑用定义法来做,其次会用向量组的线性相关性(无关性)的一些重要性质和定理结合反证法来做。同时会考虑用向量组的线性相关性(无关性)与齐次线性方程组有非零解(只有零解)之间的联系和用矩阵的秩与向量组的秩之间的联系来做。

  ▶线性方程组——解的结构和(不)含参量线性方程组的求解

  要解决线性方程组解的结构和求法的问题,首先应考虑线性方程组的基础解系,然后再利用基础解系的线性无关性、与矩阵的秩之间的联系等一些重要性质来解决线性方程组解的结构和含参量的线性方程组解的讨论问题,同时用线性方程组解结构的几个重要性质求解(不)含参量线性方程组的解。


考研数学概率部分考察的特点(扩展6)

——考研数学概率考前的解题思路

考研数学概率考前的解题思路1

  1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。

  2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。

  3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。

  4.若题设中给出随机变量X~N则马上联想到标准化X~N(0,1)来处理有关问题。

  5.求二维随机变量(X,Y)的边缘分布密度的.问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而Y的求法类似。

  6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的*面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

  7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。

  8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

  9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。


考研数学概率部分考察的特点(扩展7)

——考研数学概率论复习初期技巧

考研数学概率论复习初期技巧1

  考研数学中线性代数部分是考生们最容易得分的。线性代数的考题与高等数学、概率部分考题最大的不同就是:线性代数的一道考题可能会牵涉到行列式、矩阵、向量等等很多知识点,而后二个学科可能会针对某一个知识点出题。这是因为线性代数各个章节知识之间联系非常紧密,知识是一个环环相扣且互相融合的。

  线性代数概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。因此考研复习重点应该先充分理解概念,掌握定理的"条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法等等。基本概念、基本性质和基本方法一直是考研数学的重点,所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识,并及时进行总结,使所学知识能融会贯通,举一反三。

  下面来看看线性代数的主要考点到底有哪些内容。

  行列式——行列式这部分没有太多内容,行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

  矩阵——矩阵是一个基础,关联到整个线代。矩阵的运算非常重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。

  向量——向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

  特征值、特征向量——要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.

  另外,特征向量就是求齐次方程组的基础解系,你前面基础打牢了,这里又不是新的内容。

  二次型——二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。

  在线性代数的两个大题中,基本上都是多个知识点的综合,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,把基础烂熟于心之后,再利用做题进行综合思维的锻炼,通过做一些综合性较强的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

  相信自己一分耕耘一分收获,最后祝考生们考出好成绩!

推荐访问:概率 考研数学 考察 考研数学概率部分考察特点 考研数学概率部分考察的特点1 考研数学概率论考点 考研需要概率论与数理统计 考研数学概率论考试范围