考研数学线代典型题型的分析1 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向下面是小编为大家整理的考研数学线代典型题型分析,菁选2篇,供大家参考。
考研数学线代典型题型的分析1
行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。
矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。
向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的`实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。
考研数学线代典型题型的分析2
第一部分,行列式和矩阵。
行列式和矩阵是线性代数的基础部分,在考试中常以选择题填空题的形式出题。在这部分,重点内容是行列式的计算,逆矩阵以及初等变换和初等矩阵。其中,行列式是线性代数中最基本的运算之一,考试直接考查行列式的知识点不多,但作为间接考查的内容,行列式的计算在后续各个章节的题目中都有所涉及。矩阵是线性代数中最基本的内容,线性代数中绝大多数运算都是通过矩阵进行的,其相关的概念和运算贯穿整个学科。线性代数中基本上没有题目不涉及到矩阵以及矩阵的运算的。
第二部分,线性方程组与向量。
线性方程组与向量是线性代数的核心内容,也是理解线性代数整个学科的枢纽。整个线性代数的前半部分的主要知识点都可以以线性方程组的相关理论为轴串联起来,后半部分的特征值与特征向量和二次型等理论也是通过线性方程组与前面联系起来的。因此,本章是考生系统地把握整个学科的关键。在考试中这部分所占的比重非常大,一般每年考查一道大题加一道小题。大题可以考向量组的线性相关性,也可以考含参数的线性方程组求解。
第三部分,特征向量与二次型。
考试中,这部分所涉及的题目多,分值大,特征值与特征向量是线性代数的重要内容,也是重要的考点之一,既是对前面矩阵、线性方程组的知识的综合应用,也是后面二次型的基础。二次型是对特征值与特征向量相关知识的发展与应用,用到的方法也与上一章类似,在考试中一般与特征向量交替或是结合出题。
推荐访问:题型 考研数学 典型 考研数学线代典型题型分析 菁选2篇 考研数学线代典型题型的分析1 考研数学线代大题题型 考研线代题型总结 考研线代例题