考研数学复习答题技巧有哪些1 考研数学中,除数学二外,数一和数三都考查概率统计的知识,而且分值占比很高。根据文都考研命题研究中心老师的调查结果分析,这部分内容考题一般难度不大,只要认真复习,拿满分下面是小编为大家整理的考研数学复习答题技巧有哪些,菁选3篇【精选推荐】,供大家参考。
考研数学复习答题技巧有哪些1
考研数学中,除数学二外,数一和数三都考查概率统计的知识,而且分值占比很高。根据文都考研命题研究中心老师的调查结果分析,这部分内容考题一般难度不大,只要认真复习,拿满分都是没有问题的。下面,都教授就带着大家看看概率论和数理统计是如何复习拿满分的。
基本公式要掌握
首先必须会计算古典型概率,这个用高中数学的知识就可解决,如果在解古典概率方面有些薄弱,就应该系统地把高中数学中的概率知识复习一遍了,而且要将每类型的概率求解问题都做会了,虽然不一定会考到,但也要预防万一,而且为后面的复习做准备。
随机事件和概率是概率统计的第一章内容,也是后面内容的基础,基本的概念、关系一定要分辨清楚。条件概率、全概率公式和贝叶斯公式是重点,计算概率的除了上面提到的古典型概率,还有伯努利概型和几何概型也是要重点掌握的。
第二章是随机变量及其分布,首先随机变量及其分布函数的概念、性质要理解,常见的离散型随机变量及其概率分布:0-1分布、二项分布B(n,p)、几何分布、超几何分布、泊松分布P(λ);连续性随机变量及其概率密度的概念;均匀分布U(a,b)、正态分布N(μ,σ2)、指数分布等,以上它们的性质特点要记清楚并能熟练应用,考题中常会有涉及。
第三章是多维随机变量及其分布,主要是二维的。大纲中规定的考试内容有:二维离散型随机变量的概率分布、边缘分布和条件分布,二维连续型随机变量的概率密度、边缘概率密度和条件密度,随机变量的独立性和不相关性,常用二维随机变量的分布,两个及两个以上随机变量简单函数的分布。
第四部分随机变量的数字特征,这部分内容掌握起来不难,主要是记忆一些相关公式,以及常见分布的数字特征。大数定律和中心极限定理这部分也是在理解的基础上以记忆为主,再配合做相关的练习题就可轻松搞定。
把握常考侧重点
数理统计这部分的考查难度也不大,首先基本概念都了解清楚。χ2分布、t分布和F分布的概念及性质要熟悉,考题中常会有涉及。参数估计的矩估计法和最大似然估计法,验证估计量的无偏性是要重点掌握的。假设检验考查到的不多,但只要是考纲中规定的都不应忽视。显著性检验的基本思想、假设检验的基本步骤、假设检验可能产生的两类错误以及单个及两个正态总体的均值和方差的假设检验是考点。
总之概率统计部分考题的考查难度不会太大,考题灵活度也不如高等数学,只要参考复习资料把基本概念、公式、定理掌握好了,例题、习题多做些,历年真题里的相关题目认真做几遍,这样下来概率统计部分掌握的也就差不多了,相信各位考生一定会考出个好成绩。
考研数学复习答题技巧有哪些2
考研数学是研究生招生入学考试中通过笔试的形式对考生数学功底的考查,从近几年的考研数学历年真题分析结果来看,可以得出一个结论:线性代数的难度在高数和概率统计之间,且大多数的同学认为线性代数试题难度不大,就是计算量稍微偏大点,线代代数的考查是对基本方法的考查,但是往往在做题过程中需要利用一些性质进行辅助解决。
线性代数的学科特点是知识点之间的综合性比较强,这也是它本身的一个难点。这就需要同学们在复习过程中,注意对于知识点间的关联性进行对比着学习,有助于巩固知识点且不易混淆。
总体来说,线性代数主要包括六部分的内容,行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型。
一、行列式部分,熟练掌握行列式的计算。
行列式实质上是一个数或含有字母的式子,如何把这个数算出来,一般情况下很少用行列式的.定义进行求解,而往往采用行列式的性质将其化成上或下三角行列式进行计算,或是采用降阶法(按行或按列展开定理),甚至有时两种方法同时用。此外范德蒙行列式也是需要掌握的。行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等等。同学们只要掌握了基本方法即可。
二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用。
通过考研数学历年真题分类统计与考点分布,矩阵部分的考点集中在逆矩阵、伴随矩阵、矩阵的秩及矩阵方程的考查。此外,含随矩阵的矩阵方程,矩阵与行列式的关系、逆矩阵的求法也是考生需要掌握的知识点。涉及秩的应用,包含秩与矩阵可逆的关系,矩阵及其伴随矩阵秩之间的关系,矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价的区别与联系,系数矩阵的秩与方程组的解之间关系的分析。
三、向量部分,理解相关无关概念,灵活进行判定。
向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。要求考生掌握线性相关、线性表出、线性无关的定义。以及如何判断向量组线性相关及线性无关的方法。 向量组的秩和极大无关组以及向量组等价这些重要的知识点要求同学们一定一定掌握到位。
这是线性代数前三个内容的命题特点,而行列式的矩阵是整个线性代数的基础,对于行列式的计算及矩阵的运算与一些重要的性质与结论请考生朋友们一定要务必掌握,否则的话,对于后面四部分的学习会越学越难,希望同学们在复习过程中一定注意前面内容的复习,为后面的考研数学复习打好基础。
前面我们已经分析过,考研数学线性代数这门学科整体的特点是知识点之间的综合性比较强,有些概念较为抽象,这也是大部分考生认为考研数学线性代数不好学,根本找不到复习的头绪,做题时也是一头雾水,不知道怎么分析考虑。
这里,老师要求大家在学习过程中一定要注意知识间之间的关联性,理解概率的实质。如:矩阵的秩与向量组的秩之间的关联,矩阵等价与向量组等价的区别,矩阵等价、相似、合同三者之间的区别与联系、矩阵相似对角化与实对称矩阵正交变换对角化二者之间的区别与联系等等。若是同学们对于上面的问题根本分不清楚,则说明大家对于基本概念、基本方法还没有完全理解透彻。不过,大家也不要太焦急,希望同学们在后期的复习过程中对于基本概念、基本方法要多加理解和体会,学习一定要有心得。
下面我们分析一下后面三部分的内容,线性方程组、特征值与特征向量、二次型的命题特点。
线性方程组,会求两类方程组的解。线性方程组是线性代数这么学科的核心和枢纽,很多问题的解决都离不开解方程组。因而线性方程组解的问题是每年必考的知识点。对于齐次线性方程组,我们需要掌握基础解系的概念,以及如何求一个方程组的基础解系。清楚明了基础解系所含线性无关解向量的个数和系数矩阵的秩之间的关系。会判断非齐次线性方程组的解的情况,掌握其求解的方法。此外,考生还需要掌握非齐次线性方程组与其对应的齐次线性方程组的解结构之间的关系。
特征值与特征向量,掌握矩阵对角化的方法。这一部分是理论性较强的,理解特征值与特征向量的定义及性质,矩阵相似的定义,矩阵对角化的定义。同学们还需掌握求矩阵特征值与特征向量的基本方法。会判断一个矩阵是否可以对角化,若可以的话,需要把相应的可逆矩阵P求出来。还需要注意矩阵及其关联矩阵(转置、逆、伴随、相似)的特征值与特征向量的关系。反问题也是喜欢考查的一类题型,已知矩阵的特征值与特征向量,反求矩阵A。
二次型,理解二次型标准化的过程,掌握实对称矩阵的对角化。二次型几乎是每年必考的一道大题,一般考查的是采用正交变换法将二次型标准化。掌握二次型的标准形与规范型之间的区别与联系。会判断二次型是否正定的一般方法。讨论矩阵等价、相似、合同的关系。
虽然线性代数在考研数学考试试卷中仅有5题,占有34分的分值,但是这34分也不是很轻松就能拿下的。同学们在复习过程中需要对于基础知识点理解透彻,做考研数学题过程中多分析总结。
考研数学复习答题技巧有哪些3
在考研数学一和考研数学三中,概率论与数理统计部分大约占22%,虽然所占比重较小,但是大家在复习的时候,一样会感到困难重重,特别是在做习题以及解决实际应用方面遇到的困难会更多一些。为了帮助大家在解题时更轻松一点,小编给大家分享一些考研数学概率解题常用思路集锦。
1、如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。
2、若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式
3、若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。
4、若题设中给出随机变量X~N则马上联想到标准化~N(0,1)来处理有关问题。
5、求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。
6、欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的*面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。
7、涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。即令
8、凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
9、若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。
推荐访问:答题 复习 考研数学 考研数学复习答题技巧有哪些 菁选3篇 考研数学复习答题技巧有哪些1 考研数学选择题答题技巧 考研数学选择题技巧 考研数学选择题解题技巧