欢迎来到专业的万有范文网平台! 工作总结 工作计划 心得体会 思想汇报 述职报告 教案设计 整改报告 事迹材料
当前位置:首页 > 范文大全 > 公文范文 > 正文

高二数学重点知识点归纳,菁选3篇【通用文档】

时间:2023-03-12 12:40:13 浏览量:

高二数学重点知识点归纳1  1若等差数列{an}的前n项和为Sn,且a2+a3=6,则S4的值为()  A.12B.11C.10D.9  2设等差数列?an?的前n项和为Sn,若a1??11,a4?下面是小编为大家整理的高二数学重点知识点归纳,菁选3篇【通用文档】,供大家参考。

高二数学重点知识点归纳,菁选3篇【通用文档】

高二数学重点知识点归纳1

  1若等差数列{an}的前n项和为Sn,且a2+a3=6,则S4的值为()

  A.12B.11C.10D.9

  2设等差数列?an?的前n项和为Sn,若a1??11,a4?a6??6,则当Sn取最小值时,n等于()

  A.6B.7C.8D.9

  3记等差数列的前n项和为Sn,若S2?4,S4?20,则该数列的公差d?()

  A、2B、3C、6D、7

  4等差数列{an}中,a3?a4?a5?84,a9?73.

  求数列{an}的通项公式及Sn

高二数学重点知识点归纳2

  不等式

  一、不等式的基本性质:

  注意:

  (1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。

  (2)注意课本上的几个性质,另外需要特别注意:

  ①若ab>0,则,即不等式两边同号时,不等式两边取倒数,不等号方向要改变。

  ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。

  ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。

  ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小

  二、均值不等式:两个数的算术*均数不小于它们的几何*均数。

  基本应用:

  ①放缩,变形;

  ②求函数最值:

  注意:

  ①一正二定三相等;

  ②积定和最小,和定积。

  常用的方法为:拆、凑、*方;

  三、绝对值不等式:

  注意:上述等号“=”成立的条件;

  四、常用的基本不等式:

  五、证明不等式常用方法:

  (1)比较法:作差比较:

  作差比较的步骤:

  ⑴作差:对要比较大小的两个数(或式)作差。

  ⑵变形:对差进行因式分解或配方成几个数(或式)的完全*方和。

  ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。

  注意:若两个正数作差比较有困难,可以通过它们的*方差来比较大小。

  (2)综合法:由因导果。

  (3)分析法:执果索因。基本步骤:要证……只需证……,只需证……

  (4)反证法:正难则反。

  (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。

  放缩法的方法有:

  ⑴添加或舍去一些项,

  ⑵将分子或分母放大(或缩小)

  ⑶利用基本不等式,

  (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

  (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

  直线、*面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o"x"、o"y"、使∠x"o"y"=45°(或135°);

  (2)*行于x轴的线段长不变,*行于y轴的线段长减半。

  (3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。

  3、表(侧)面积与体积公式:

  ⑴柱体:

  ①表面积:S=S侧+2S底;

  ②侧面积:S侧=;

  ③体积:V=S底h

  ⑵锥体:

  ①表面积:S=S侧+S底;

  ②侧面积:S侧=;

  ③体积:V=S底h:

  ⑶台体

  ①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:

  ①表面积:S=;

  ②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与*面*行:

  ①线线*行线面*行;

  ②面面*行线面*行。

  (2)*面与*面*行:

  ①线面*行面面*行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直*面内的两条相交直线

  5、求角:(步骤——Ⅰ.找或作角;Ⅱ.求角)

  ⑴异面直线所成角的求法:*移法:*移直线,构造三角形;

  ⑵直线与*面所成的角:直线与射影所成的角

  空间中直线与*面、*面与*面之间的位置关系

  1、直线与*面有三种位置关系:

  (1)直线在*面内——有无数个公共点

  (2)直线与*面相交——有且只有一个公共点

  (3)直线在*面*行——没有公共点

  指出:直线与*面相交或*行的情况统称为直线在*面外,可用aα来表示aαa∩α=Aa∥α

  2.2.直线、*面*行的判定及其性质

  2.2.1直线与*面*行的判定

  1、直线与*面*行的判定定理:*面外一条直线与此*面内的一条直线*行,则该直线与此*面*行。

  简记为:线线*行,则线面*行。

  符号表示:

  aα

  bβ=>a∥α

  a∥b

  空间几何体的三视图

  1、定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)

  2、注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:

  ①原来与x轴*行的线段仍然与x*行且长度不变;

  ②原来与y轴*行的线段仍然与y*行,长度为原来的一半。

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和。

  (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

  (3)柱体、锥体、台体的体积公式

  (4)球体的表面积和体积公式:V=;S=

  5、空间点、直线、*面的位置关系

  公理1:如果一条直线的两点在一个*面内,那么这条直线是所有的点都在这个*面内。

  应用:判断直线是否在*面内

  用符号语言表示公理1:

  公理2:如果两个不重合的*面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:*面α和β相交,交线是a,记作α∩β=a。

  符号语言:

  公理2的作用:

  ①它是判定两个*面相交的方法。

  ②它说明两个*面的交线与两个*面公共点之间的关系:交线公共点。

  ③它可以判断点在直线上,即证若干个点共线的重要依据。

  公理3:经过不在同一条直线上的三点,有且只有一个*面。

  推论:一直线和直线外一点确定一*面;两相交直线确定一*面;两*行直线确定一*面。

  公理3及其推论作用:

  ①它是空间内确定*面的依据

  ②它是证明*面重合的依据

  公理4:*行于同一条直线的两条直线互相*行

  空间直线与直线之间的位置关系

  ①异面直线定义:不同在任何一个*面内的两条直线

  ②异面直线性质:既不*行,又不相交。

  ③异面直线判定:过*面外一点与*面内一点的直线与*面内不过该店的直线是异面直线

  ④异面直线所成角:作*行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

  直线与圆:

  1、直线的倾斜角的范围是

  在*面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或*行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα。

  过两点(x1,y1),(x2,y2)的直线的斜率k=(y2—y1)/(x2—x1),另外切线的斜率用求导的方法。

  3、直线方程:

  ⑴点斜式:直线过点斜率为,则直线方程为,

  ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

  4、直线与直线的位置关系:

  (1)*行A1/A2=B1/B2注意检验

  (2)垂直A1A2+B1B2=0

  5、点到直线的距离公式;

  两条*行线与的距离是

  6、圆的标准方程:圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线。

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题。①相离②相切③相交

  9、解决直线与圆的关系问题时,要充分发挥圆的*面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

高二数学重点知识点归纳3

  解三角形

  1、三角形三角关系:A+B+C=180°;C=180°-(A+B);

  2、三角形三边关系:a+b>c; a-b3、三角形中的基本关系:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, A?BCA?BCA?BC?cos,cos?sin,tan?cot 222222

  4、正弦定理:在???C中,a、b、c分别为角?、?、C的对边,R为???C的外abc???2R.接圆的半径,则有sin?sin?sinCsin

  5、正弦定理的变形公式:

  ①化角为边:a?2Rsin?,b?2Rsin?,c?2RsinC; abc,sin??,sinC?; 2R2R2R

  a?b?cabc???③a:b:c?sin?:sin?:sinC;④. sin??sin??sinCsin?sin?sinC②化边为角:sin??6、两类正弦定理解三角形的问题:

  ①已知两角和任意一边,求其他的两边及一角.

  ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))

  7、余弦定理:在???C中,有a?b?c?2bccos?,b?a?c?2accos?,222222c2?a2?b2?2abcosC.

  b2?c2?a2a2?c2?b2a2?b2?c2

  8、余弦定理的推论:cos??,cos??,cosC?. 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)

  9、余弦定理主要解决的.问题:①已知两边和夹角,求其余的量。②已知三边求角)

  10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是???C的角?、?、C的对边,则:

  ①若a?b?c,则C?90;②若a?b?c,则C?90;

  ③若a?b?c,则C?90.

推荐访问:知识点 高二 归纳 高二数学重点知识点归纳 菁选3篇 高二数学重点知识点归纳1 高二数学重点知识点归纳100字 高二数学上重点知识归纳 高二数学知识点梳理