下面是小编为大家整理的2023年度四年级上册数学第四单元教案,供大家参考。
四年级数学教师要本着学生本位思想,一定要让学生成为学习的主体,想尽办法调动学生的自主性。四年级数学教案能够提升四年级数学教师的教学质量,那么你知道四年级数学教案的写法吗?你是否在找正准备撰写“四年级上册数学第四单元教案”,下面小编收集了相关的素材,供大家写文参考!
#503876四年级上册数学第四单元教案1
教学内容:
亿以内数的认识(教科书第2~4页的内容,练习一第1题。)
教学目标:
知识与技能
1.使学生认识计数单位“万”“十万”“百万”“千万”和“亿”,知道亿是个大数;知道亿以内各个计数单位的名称和相邻两个单位之间的关系。
2.理解、掌握我国记数习惯,每四个数位为一级。
3.掌握数位顺序,能够根据数级初步地读出亿以内的数。
过程与方法:
通过情境创设、小组合作学习等形式,使学生获得正确读数一些基本方法的成功体验;培养学生分析、综合的能力,培养学生在生活中主动探究的意识。
情感、态度与价值观
体验数学与现实生活的密切关系,激发学生学习数学的兴趣,增强学生学好数学的信心。
教学重点:
记数单位以及各记数单位间的关系。
教学难点:
数级、数位、记数单位的区别以及“位值”的理解。
教学准备:
课件、计算器等。
教学过程:
一、创设情境 生成问题
1、课件导入
同学们,在日常生活中,我们经常接触到很多大数。(出示投影)
1994年首都北京的人口有一千零五十一万。
光的速度是每秒二十万千米。
地球离月亮大约有三十八万四千四百千米。
在日常生活和生产中,还经常用到比万大的数,今天咱们一起来认识一些大数。(板书课题)
2、介绍主题图(出示主题图)
2000年我国进行了第五次全国人口普查。让我们一起来看看这次普查中这六个省市、自治区的人口数据。(课件出示:我国人口)
谁能尝试读出上面这些数?
指名读数,并让学生说说他是怎样读的?
二、探究交流 解决问题
出示例1:13819000这个数有多大呢?
1.计数器操作,认识计数单位。
在这个计数器上,你发现了什么?
用计数器数数:拨上一千,然后一千一千地数,一直数到九千,再拨上一千。
问题:九千再加上一千是多少?千位满十要怎样?
认识十个一千就是一万。(板书“万”。)
让学生在计数器上一万一万地数,一直数到九万,再加一万,是多少?认识十个一万是十万,板书“十万”。用同样方法,完成一百万、一千万、一亿的认识,分别板书:百万、千万、亿。
2.小组讨论学习计数单位间的关系。
大家知道万、十万、百万、千万、亿是什么吗?你们发现这些计数单位之间有什么关系?
3.认识数位和数位顺序表
(1)学习数位。将13819000按数位顺序写出。说出每个数字所占的数位名称、计数单位,表示有多少个这样的计数单位。
(2)同桌学生互相说一说其他数位上的数各表示多少。
(3)学习“数级”。介绍我国计数的四位分级法。
为了便于读亿以内的数,我国沿用了四位一级的计数规律,即从右起每四位为一级.个、十、百、千是个级,表示多少“个”;万、十万、百万、千万是万级,表示多少个“万”.
三、巩固应用 内化提高内化提高
完成第4页“做一做”第1题。
同桌之间互相说数,一个一、一万一万地说,另一个拨。
四、回顾整理 反思提升
让学生谈谈学习体会、收获。
#503875四年级上册数学第四单元教案2
教学目标:
1、通过复习,巩固所学的计数单位和相邻两个单位之间的进率,掌握数位顺序表,能正确地读写大数,掌握改写和省略的方法。
2、进一步培养学生的数感。
3、使学生参与复习的全过程,通过合作交流等活动,使学生形成知识网络。
4、培养学生的反思意识和合作精神。
教学重点:
数的概念、读写数的方法、改写和省略的方法
教学难点:
数中间和末尾有0的读写法、用四舍五入法求近似数
教学准备:
ppt课件。
教学策略:
通过引导学生回忆,复习各知识点和重难点,然后通过练习巩固对知识的掌握和应用。
教学过程:
一、复习整理
1、本节课对“多位数的认识”这部分知识进行整理和复习。
板书课题:复习多位数的认识
2、打开数学书看第一单元的内容,看看本单元都学习了哪些内容?
哪个小组愿意汇报你们组的交流情况?
老师指导并归纳,总结在黑板上。
问:你认为本单元哪些内容比较难?你最容易出错?
二、复习知识点
1、复习数位顺序表
(1)什么叫数位、计数单位、数级
(2)每相邻两个计数单位之间有什么关系?
10个一万是十万
10个十万是一百万
10个一百万是一千万
10个一千万是一亿
(3)每相邻的两个计数单位之间的进率都是十,这种计数方法叫十进制计数法。
(4)自然数的认识
表示物体个数的1、2、3、4、5、6、7、8、9、10、11……都是自然数,一个物体也没有,用0表示,0也是自然数。
问:最小的自然数是几?有没有的自然数?自然数的个数是无限的还是有限的?
2、多位数的读写法的方法是什么?
3、改写和省略的方法是什么?
4、如何比较数的大小?
三、练习内容
1、读出下面各数。
4231579( ) 30050082( ) 3960400000( ) 7000700070( ) 700300009( )26740020000( ) 315400000( ) 50708000000( )
2、写出下面各数
三千零三万三百零三( )
一千零五十万四千零二十( )
二十亿零七百六十八( )
三百一十亿七千零八万三千零四十( )
3、改写成以万做单位的数。
80000( ) 9000000( ) 47000000( ) 200320000( )
4、改写成以亿做单位的数
325600000000( ) 48000000000( )
5、求近似数
(1)16483520 9528641 799000 380800 8396000(省略万后面的尾数)
_____________________________________
(2)2709546312 983536478 89970804758(省略亿后面的尾数)
_____________________________________
6、比大小
1650010○16500100 350020○530020 2509200○2509000 6309607○670630
7、用6、3、8、9和5个0按要求写出九位数。
(1)的数
(2)最小的数
(3)一个0都不读的数
(4)只读出一个0的数
(5)要读出2个0的数
(6)约等于3亿的数 7)约等于10亿的数
四、总结
这节课复习了什么?还有什么问题?
五、作业
练习二十一1、2、3
板书设计:
大数的认识总复习
表示物体个数的1、2、3、4、5、6、7、8、9、10、11……都是自然数,一个物体也没有,用0表示,0也是自然数。
#503874四年级上册数学第四单元教案3
教学目标:
1.了解数的产生,认识自然数。认识亿级的数和计数单位“十亿”“百亿”“千亿”,掌握整数数位顺序表,认识十进制计数法。
2.在经历数的产生过程中,感受“一一对应”的思想和“实践第一”的辩证唯物主义观点。
3.使学生了解古老的数学文化,培养学生学习数学的兴趣,并渗透“生活中处处有数学”的思想。
教学重点:数的产生过程。
教学难点:理解十进制计数法的意义和十进位值制的价值。
教学准备:课件
教学过程:
一、数的产生
(一)导入
1.师:我们身边有很多数,找一找。(人数、男生数、女生数、年龄、身高、体
2.师:我们的生活离不开数,可是数的产生也经历了一个漫长的过程。
(二)了解古代计数方法
1.师:你知道远古时代的人是以什么为生吗?(打猎)对,他们以打猎为生,每次捕到猎物或捞到鱼需要知道捕获的数量,他们也需要数数,记录数的多少,但和那时的方法和现在不同,你知道他们用的是什么方法吗?(摆石子、刻痕、结绳计数)
2.课件出示:图片
师:比如,出去放牧时,每放出一只羊,就摆一个小石子,一共出去了多少只羊,就摆多少个小石子;放牧回来时,再把这些小石子和羊一一对应起来,如果回来的羊的只数和小石子同样多,就说明放牧时羊没有丢。在木头上刻道来计捕鱼的条数的道理也是一样。刻道计数和结绳计数也是如此。
3.课件出示:
师:这是我国挖掘出来的“甲骨文”上的“数”字,这个字就源于结绳记事。
4.师:大家想,随着人们捕猎技术的进步,捕猎工具的发展,打 到的猎物就会越来越多,相应的计数时,摆的石子就会越来越多,还是很不方便。怎么办?
【设计意图:通过介绍数的产生,感受“一一对应”的思想,体会古代计数方法的不便,产生对数字的需求。】
(三)符号记数
1.师:随着语言的发展,逐渐出现了数词。以后又随着文字的发展,逐渐发明了一些记数的符号,也就是最初的数字。
2.通过介绍古埃及人记数符号,揭示计数法就是表示计数单位的个数,体会没有位值带来的不便。
(1)课件出示:
师:这是古埃及人设计的计数单位。
(2)课件出示:
师:看看这个数用到了哪些计数单位,是多少?(4217)你是怎么想的。
(3)师:要想知道这个数表示多少,就必须看清有什么计数单位和有几个这样的计数单位。
(4)师:你能用古埃及的计数方法表示出太阳的直径1389000千米吗?试一试。
(5)课件出示:
(6)师:通过自己的尝试,你有什么感觉?(麻烦)
(7)师:请你想一想,这种计数方法为什么会这么麻烦?(每个计数单位都要用不同的符号,表示数时,有几个这样的计数单位就要画几次)
3.介绍阿拉伯数字
(1)课件出示:
(2)师:由于每个国家的文化背景不同,所以各国的数字也不一样。随着社会的发展,人们交流的增多,数字不同很不方便,就需要有统一的数字。这就是“阿拉伯数字”。阿拉伯数字是谁发明的?
公元八世纪前后,印度发明的数字传入了阿拉伯,在公元十二世纪又从阿拉伯传入欧洲,人们就误认为这些数字是阿拉伯人发明的,后来就叫“阿拉伯数字”。
【设计意图:在用古埃及记数符号表示太阳直径的过程中,体会没有位置制时记数的麻烦。通过介绍其他各国的记数符号,体会同意数字的必要性。】
二、认识自然数及新的计数单位等,整理数位顺序表,掌握十进制计数法。
(一)认识自然数
1.师:用这10个数字能表示多少数?
2.师:表示物体个数的1、2、3、4、5、6、7、8、9、10、11…都是自然数,一个物体也没有,用0表示,0也是自然数。所有的自然数都是整数。
3.看教材第17页
4.师:通过看书,你还了解到了自然数的哪些知识。
(二)十进制计数法的原则,体会位值制的价值。
1.师:为什么仅仅这10个数字就能表示出许许多多的数呢?比如:999,都是9,它们表示的意思一样吗?(9在不同的数位)
2.师:对,因为9在不同的位置,在右边表示9个一,在中间表示9个十,在左边9个百。同样的数字在不同的位置表示的大小就不同,这样不用发明那么多的符号了,记数也不用那么麻烦了。(课件演示)
3.师:如果再加1个石子,右边的9就达到10个,就可以放到中间,中间又够10组,就可以放到更高的位置,同样再够10组,就要再往左进一位。(课件演示)
4.师:这就是人类的进步,能用位置来区分计数单位的不同,它使记数变得简单。
【设计意图:以“999”为例,认识位值制,感受它给计数带来的便利。了解十进制计数法的原则,即“满十进一”。】
(三)认识新的计数单位,数位、数级,整理数位顺序表
1.师:这里的位置就是我们现在所说的“数位”,我们已经学过了哪些数位?它们的计数单位分别是什么?
2.师:你还能继续说出新的计数单位吗?它们所在的数位又叫什么呢?还有更高的吗?
3.师:这些计数单位之间有什么关系?每相邻两个计数单位间的进率是十,这种计数方法叫作十进制计数法。
4.师:我国习惯从个位起,每四位一级,分别是哪几个数级?
课件出示:数位顺序表
【设计意图:引导学生利用类推迁移规律认识新的计数单位、数位及数级,掌握数位顺序表和十进制计数法。】
三、知识运用
1.教材第22页第1题。
2.教材第22页第2题。
#503873四年级上册数学第四单元教案4
教学目标
知识与技能:学生掌握除数是整十数除法方法,并能熟练进行计算。
过程与方法:使学生经历笔算除法计算的全过程,帮助学生理解算理。
情感、态度和价值观:培养学生养成认真计算的良好学习习惯。
教学重难点
定商,商的位置。
一、热身运动。
1.看着算式直接报出答案。
60÷20 120÷30 80÷20 360÷40
180÷30 240÷40 420÷60 240÷30
2.括号里能填几?
30×( )<280 20×( )<82 40×( )<278
70×( )<165 30×( )<182 90×( )<620
3.笔算87÷3和427÷6。
4.反馈。结合这两道题说说你是怎么算的。生说师适当板书除法法则。
5.揭题。笔算除法。
二、探究新知
1.出示主题图。说说你从图中了解到哪些数学信息?可以提出什么数学问题?怎样列式?
(1)板书:可以分给几个班?92÷30,口算,估算。
(2)学生尝试笔算。学生自练,师巡视收集学生的各种典型情况。并进行板书。
反馈。
①判断对错。你能告诉老师哪一个竖式是正确的?为什么?另外三个竖式错在哪里?为什么?
②结合小棒图理解算理。
③结合正确的竖式说说92÷30是怎么算的?提问:商为什么写在个位上?
④做一做。30÷10 40÷20 64÷30 85÷40。请四位同学上台板演。
(3)笔算192÷30。
学生列式笔算。
反馈。结合正确的竖式说说:你是怎么算的?商4,你是怎么想的?
(4)比较:在笔算192÷30和92÷30的过程中,有什么相同的地方,有什么不同的地方?
(5)做一做:140÷20 280÷50 565÷80请三生上板演。
2.小结
我们今天学习了什么知识?在笔算除数是两位数的除法时,要注意哪些方面?
三、练习
1.选择其中一组完成计算。
A 82÷30 102÷30 280÷70
B 78÷20 197÷80 364÷40
2.下面的计算对吗?把不对的改正过来。练习十四,第2题。
3.体育用品商店正在搞促销活动:
陈老师原来打算买12只足球,用这些钱现在可以买多少只足球?你还可以提出什么问题?
四、总结
这节课你有哪些收获?
教学设想:
1.计算教学之前还要不要“复习铺垫”呢?
建构主义学习理论认为,学习总是与一定的社会文化背景即“情境”相联系的,在实际情境下进行学习,有利于意义建构。的确,良好的问题情境能有效地激活学生的有关经验、体验。《标准》也非常强调,计算教学时“应通过解决实际问题进一步培养数感,增进学生对运算意义的理解”;“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程”;“避免将运算与应用割裂开来”。
然而,任何事物都不是绝对的。计算教学之前还要不要“复习铺垫”呢?其实,新课前的复习铺垫主要目的,一是为了通过再现或再认等方式激活学生头脑中已有的相关旧知,二是为新知学习分散难点。前者,只要有必要,则无可厚非。问题在于后者,有一些计算教学中,常常有人为了使教学“顺畅”,设计了一些过渡性、暗示性问题,甚至人为设置了一条狭隘的思维通道,使得学生无需探究或者稍加尝试,结论就出来了。这节课,它是在学生学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。用整十数除整十数、几百几十数的口算,是学习除数是两位数笔算除法的重要基础。为了激活学生头脑中已有的相关旧知,我觉得有必要在课前安排一个复习铺垫的环节。因此我在课前安排了3个小练习:1、看着算式直接报出答案;2、括号里能填几;3、笔算87÷3和427÷6。
2.要注重计算与日常生活的联系。
诚然,计算本身具有抽象性,但其反映的内容又是非常现实的,与人们的生活、生产有着十分密切的联系。新课程注重计算的现实意义,适当让学生在实际情境中通过活动体验、感受和理解运算的意义、来源、现实背景和本质。
《标准》注重了通过实际情境使学生体验、感受和理解运算的意义。在“总体目标”中提出:“经历将一些实际问题抽象为数与代数问题的过程,掌握数与代数的基础知识和基本技能,并能解决简单的问题。”“经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维。”
3.解决问题与技能形成。
过去计算教学中单调、机械的模仿和大量重复性的过度训练是要不得的,但是,在计算教学时只注重算理理解和解决实际问题,对计算技能形成的过程如蜻蜓点水一带而过,也是不利于培养学生的计算能力的。特别需要指出的是,在学生初步理解算理,明确算法后,不必马上去解决实际问题,因为这时正是计算技能形成的关键阶段,应该根据计算技能形成的规律,及时组织练习。具体地说,可以先针对重点、难点进行专项和对比练习,再根据学生的实际体验,适时缩减中间过程,进行归类和变式练习,最后让学生面对实际问题,掌握相应策略。
#503870四年级上册数学第四单元教案5
教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边( ),对角( ),对角线( )。
2.( )是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180°后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到∠_BAC=∠ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题