《乘法结合律》的优秀教案1 【教学目标】 1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。 2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。 3、会用乘法分配下面是小编为大家整理的《乘法结合律》教案3篇,供大家参考。
《乘法结合律》的优秀教案1
【教学目标】
1、通过探索乘法分配律中的活动,使学生进一步体验探索规律的过程。
2、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
3、会用乘法分配律进行一些简便计算。
【教学重点】
自主发现乘法分配律,并能用字母表示。
【教学难点】
发现并让学生自己归纳乘法分配律
【课前准备】
口算练习题,幻灯片
【教学过程】
一、新知导入
师:请同学们进行口算练习
5×2=25×2=
5×4=25×4=
15×2=16×5=
15×4=45×2=
75×4=125×8=
师:请同学们观察这一组口算练习有什么特点。
生:他们的结果都是整十整百整千的数。
师:同学们的观察真仔细,像这样2个数相乘结果是整十整百整千的数,都是好朋友,这些好朋友今后都会帮助我们来运算,我们都应记住。这里特别的请大家记住三对好朋友:5×2、25×4、125×8。
师:上节课,我们进行了有趣的探索活动,发现了很多奇妙的规律,在我们的数*算中,还有很多规律,我们这节课就继续探索和乘法有关的知识,相信大家一定会有新的发现。(板书:探索与发现)
二、新知探索
师:同学们玩过玩具积木吗?
生:玩过。
师:你会用积木搭些什么呢?
学生回答自己用积木搭过的物体。
师:老师也用小正方体积木搭了一个立体图形。大家一起来看看。(课件出示书上的情境图)
师:你能看出老师搭的是什么形状吗?
生1:正方体。
生2:不对,是长方体。
师:真好,你们观察得真仔细!那么这个长方体是由多少个小正方体组成的呢?你们是怎样计算得到这个答案的呢?请同学们每个人动笔算一算。
(师将学生的多种算法板书在黑板上,板书:从上面看:3×5×4
从前面看:5×4×3
从侧面看:3×4×5)
师:由于同学们观察角度的不同,所以列出的算式也不相同,现在请同学们比较一下,上面的第一和第二这2个算式有什么相同点和不同点?
生:相同点都是3、4、5三个数字相同,不同点是数字的位置不同。
师:数字位置不同运算顺序就不同,那么大家想想,如果三个数字的位置不变,你有什么办法还按照刚才同学的运算顺序进行运算吗?(不亦动3、4、5的位置,能不能先算5×4)
生:用小括号把5×4括起来。
(板书:(5×4)×3=3×(5×4))
师:请同学们计算一下这2个算式的结果。(学生计算发现结果都是60)
师:我们以往将三个数连乘都是先把前两个数相乘,再乘第三个数,而现在我们也可以把后两个数先相乘,再和第一个数相乘,它们的结果相同。这是一种巧合呢?还是一个规律呢?谁能举出类似这样的三个数连乘的例子?(找2-3个学生举例子,例子板书在黑板上)
师:同学们,你能举例了吗?现在请每个人在练习本上举一个例子,然后在小组内汇报你举的例子。(提示:如果找到比较大的数,可以借助计算器)
(学生汇报之后教师板书学生的举例,3、4个即可)
师:从刚才大家的举例来看,每一组的结果都是相同的。同学们,你能用自己的语言说说这些等式的共同点吗?
师:同学们概括的`真好,这就是乘法结合律。如果用a,b,c表示三个数,你能总结出发现的规律吗?(如果同学们概括不出来,可以用字母的方法表示,并提示学生以后用字母这种表示方法表示其他的规律,更加便捷)
师:现在请同桌2人对照这字母的表达方式说一说什么是乘法结合律。
师:同学们真聪明!请回想一下,我们是怎样发现乘法结合律的?
在计算搭长方体所需要的小正方体个数过程中发现了三个数连成,顺序不同,结果却相同这一问题(板书:发现问题)于是我们从中猜想是不是有什么规律(板书:提出假设)经过举例验证(板书:举例验证)我们总结出乘法的结合律(板书:概括规律)
以后,我们可以用这样的方法去发现更多的规律。
三、新知应用
(1)练习
(42×4)×5=42×(4×□)
(35×2)×5=35×(□×5)
(28×2)×5=
(47×25)×4=47×(□×□)
师:这里面出现了我们一上课提到的三对好朋友,大家发现了吗?(再次提醒学生注意5×2、25×4、125×8这三组数)
(2)课件出示:
38×25×4
49×125×8
(带领学生做第一道练习题,在黑板上板书过程,指导学生观察数字以及板书格式,体会简便的必要性。然后再让学生在练习本上做第二道习题。)
(3)让学生观察一开始板书的三组式子:3×5×4
5×4×3
3×5×4
师:观察第一组和第三组式子,有什么发现?
生:5×4和5×4位置改变了。
师:没错,那么这2个式子的结果相同吗?
生:相同
师;你能再举几个类似的例子吗(学生举例)
师:其实这也是数学中的一个重要运算定律
《乘法结合律》的优秀教案2
教学内容
四年级(下册)第61~62页。
教学目标
1.使学生经历探索乘法运算律的过程,理解并掌握乘法交换律和结合律,初步体验应用乘法运算律可以使一些计算简便,并能进行简便运算。
2.使学生在探索乘法运算律的过程中,初步培养学生观察、比较、抽象、概括能力,逐步提高抽象思维的水*,进一步发展符号感。
3.使学生在数学学习活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成主动思考和探究问题的意识和习惯。
教学过程
一、复习旧知、导入新课
1.出示:
你能在下列的 内填上合适的数吗?
28+320=320+ ;
(27+138)+62=27+( + );
35+ = +35。
提问:你能说出填数的依据吗?谁能用字母分别表示加法的交换律和结合律?
2.出示:
在下列○内填上合适的运算符号。
4○10=10○4 (2○3)○5=2○(3○5)。
谈话:同学们,这两道题的○里既可以都填写加号,也可以都填写乘号。如果填加号是根据加法的交换律和结合律;而如果填乘号,你能联想到什么呢?是啊,加法有交换律和结合律,乘法是否也有交换律和结合律呢?
3.导入新课。
谈话:今天我们就来研究乘法中的运算规律,首先来研究乘法是不是有交换律呢?
二、举例验证探索规律
(一)探索乘法交换律。
1.情景中感知乘法交换律。
出示例题。(略)
谈话:图中的小朋友在干什么?你能列出乘法算式求一共有多少人在踢毽子吗?
学生列式:3×5=15(人)或5×3=15(人)。
提问:我们知道,每组有5个同学踢毽子,求3组同学一共有多少人,可以列式3×5,也可以列式5×3。所以,这两道算式可以用什么符号联结?
板书:3×5=5×3。
【说明:充分运用例题资源,让学生理解求一共有多少人踢毽子,就是求3个5是多少,根据乘法的意义可以列出两种不同的乘法算式。让学生在真实的情景中初步感知乘法的交换律,有利于唤起学生已有的知识经验,促进对乘法交换律的理解。】
2.举例验证。
谈话:我们知道3×5=5×3,你能再写出一些这样的等式吗?
学生举例。
引导:你是直接写出了等式还是先算出每组中两道算式的结果,然后再写等号呢?
学生交流,教师选择一些等式板书。
电脑验证大数相乘的结果。
谈话:像这样我们学过的两个数相乘,交换两个乘数的位置,积不变。
3.总结规律。
讨论:你写出的每一个等式左右两边的算式中什么变了,什么不变?把你的发现说给你的同桌听。(每组算式等号两边的两个乘数相同,积也相同,不同的是两个乘数交换了位置。)
板书:两个数相乘,交换乘数的位置,积不变,这叫做乘法的交换律。
提示:你能像加法交换律一样用字母来表示乘法的交换律吗?
板书:a×b=b×a。
提问:等式中的a和b可以分别表示什么数?你是喜欢用语言来叙述,还是用字母来表示乘法交换律呢?
【说明:引导学生观察和讨论等式中变与不变的规律,帮助学生透过现象看本质;让学生进一步体验用字母表示乘法交换律更加简洁明了,有利于培养学生的符号意识。】
4.回忆乘法交换律在过去学习中的运用。
谈话:乘法的交换律,我们在二、三年级就遇到过,你能回顾一下,过去在学习哪些知识时用过乘法的交换律吗?(学生可能想到:根据一句口诀可以算算两道乘法算式;用调换乘数的位置再乘一遍的方法验算乘法等。)
【说明:通过情景再现的方式,帮助学生回忆乘法交换律在过去的数学学习中的运用,能帮助学生进一步理解乘法交换律,同时使学生体会学习乘法交换律的价值。】
(二)探索乘法结合律。
1.初步感知。
谈话:我们已经通过举例的方法研究了乘法交换律,那现在让我们继续来研究乘法的结合律。
出示例题。(略)
谈话:仔细观察,现在操场上有多少人在踢毽子呢?你会列式计算吗?
组织学生交流。选择列为(5×3)×4和5×(3×4)的同学板演。
2.引导比较。
提问:两道算式完全一样吗?有什么不同?(两个算式中都是5、3、4这三个乘数相乘,乘数的位置相同,运算的顺序不同,计算结果也相同。第一道括号在前,表示先把前两个数相乘,再和第三个数相乘;第二道括号在后,表示先把后两个数相乘,再和第一个数相乘。)
提问:两道题的运算顺序不同,为什么得数还相同呢?(都是求操场上一共有多少人在踢毽子,都是把5、3、4三个数相乘)
板书:(5×3)×4=5×(3×4)。
3.举例验证。
谈话:从刚才的例子中,我们发现三个数相乘,可以先把前两个数相乘,也可以先把后两个数相乘。你能再写出几组这样的等式吗?请大家同桌合作,写一写,说一说。
组织交流,教师有选择地板书一些等式。
4.总结规律。
讨论:
(1)你发现等号两边的算式中什么不变,什么变了?
(2)你能从这些算式中发现什么规律?
师生共同归纳乘法结合律。
板书:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变,这叫做乘法的结合律。
谈话:如果用a、b、c分别表示三个乘数,你能用含有字母的式子表示乘法结合律吗?
板书:(a×b)×c=a×(b×c)。
【说明:乘法结合律的教学,教师引出一个实例后,就把研究的主动权交给了学生,引导学生运用“猜测—举例验证—归纳结论”的思路进行探究,有利于学生进一步体会探索数学规律的一般过程。鼓励学生同桌共同研究,既可以避免学生因计算复杂而影响规律探究的积极性,又可以培养学生合作探究的能力,让学生在合作探究中享受数学学习的成功。】
《乘法结合律》的优秀教案3
设计说明
根据学生的认知规律,在教学中我坚持“以学生为主体”的理念,突出“以学生发展为本”的教学思想,整个教学过程以学生自主学习、自主探究为主,通过学生的观察、验证、归纳、运用,让学生感受数学问题的探究性和挑战性。
1.猜谜激趣,唤醒旧知。
数学与生活有着密切的联系,借助生活中的现象激发学生探究数学的欲望,可以起到事半功倍的效果。在导入新课时,教师口述谜语,以猜谜的形式引入,有利于激发学生的学习兴趣。当学生猜出是纽扣之后,教师顺势牵引到数学学习中,让学生回忆:在数学学习中,哪个知识点涉及到交换位置呢?通过这样的提问,唤起学生对已有知识的回忆,同时也为学生的知识迁移埋下伏笔。
2.知识迁移,探究体验。
探究数学规律是有过程的,对于这个过程的认识不是教师传授的,而是学生自己体验和感受的,对学生已有的体验和感受及时地归纳总结是提高探究能力的重要环节。本节课突出“以学生发展为本”的教学思想,在教师的引导下,利用学生已经掌握的加法运算定律进行知识迁移,学生通过猜想,探究、归纳出乘法交换律和乘法结合律,并理解其作用,为后面的简便计算作铺垫。
课前准备
教师准备多媒体课件课堂活动卡
教学过程
⊙猜谜引入,揭示课题
师:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。请同学们想一想,这是什么?(生积极举手,低声喊“纽扣”)
师:你为什么会想到是纽扣?(纽扣扣错了,衣服穿出去会很难看,会让人笑话)
师:纽扣交换了位置,就会产生笑话,我们刚学的加法运算定律也和交换位置有关。谁能将加法交换律说给同学们听听?(交换两个加数的位置和不变,这就是加法交换律)
师:用字母如何表示加法交换律和加法结合律?乘法有没有类似的规律呢?今天我们就一起来探究一下与乘法有关的运算定律。(板书课题)
设计意图:
用谜语拉开学习的序幕,既激发了学生学习的兴趣,又活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生探索规律作好了知识铺垫。
⊙探究新知
1.解读主题图,引出例题。
(1)(课件出示主题图)观察主题图,说一说,主题图中给出了哪些信息?(一共有25个小组,每组里4人负责挖坑、种树……)
(2)你能根据主题图提出哪些问题?
(教师引导学生提出例5、例6的问题)
①负责挖坑、种树的一共有多少人?
②一共要浇多少桶水?
2.教学乘法交换律。
(1)课件出示例5:负责挖坑、种树的一共有多少人?
(2)要想解决这个问题,需要哪些条件呢?
(一共有25个小组,每组里4人负责挖坑、种树)
(3)先想一想,再列式计算,然后在小组内相互交流。
(4)指名汇报计算过程和结果。
汇报,可能有两种列式方法:
方法一4×25。
方法二25×4。
师:两个算式的结果是否相等?两个算式之间可以用什么符号连接?你还能举出其他这样的例子吗?
生1:两个算式的结果是相等的,可以用等号连接。
生2:我列举的算式是8×25=25×8=200。
师:你能从中发现什么规律?能给乘法的这种规律起个名字吗?(学生总结,教师引导,课件出示后学生齐读,师板书:两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律)
(5)你能试着用字母表示吗?(学生汇报用字母表示:a×b=b×a)
(6)我们在原来的学习中用过乘法交换律吗?(用过,在进行乘法验算时)
(7)反馈练习。
①下面有两道题需要同学们运用乘法交换律进行填空。(教材25页“做一做”中第一排的两道题)
②数学小游戏。
师:同学们的表现不错,所以老师决定做游戏奖励你们,这里有几道题,如果你认为这道题运用了乘法交换律就举手,如果你认为这道题没有运用乘法交换律就不举手。
3×15=5×9 a×b=b×a
34×0=0×34 8×3×9=8×9×3
3.教学乘法结合律。
师:加法有交换律和结合律,乘法也有交换律,那么乘法还可能有什么运算定律?选择例6作为研究对象来探究一下。
(1)课件出示例6:一共要浇多少桶水?
(2)要想解决这个问题,需要哪些条件呢?(一共有25个小组,每组要种5棵树,每棵树要浇2桶水)
(3)先想一想,再列式计算,然后在小组内相互交流。
学生独立解答,可能会出现两种不同的方法:
方法一先求一共种了多少棵树,再求一共要浇多少桶水。
(25×5)×2
=125×2
=250(桶)
方法二先求每组要浇多少桶水,再求一共要浇多少桶水。
25×(5×2)
=25×10
=250(桶)
(4)在这两个算式中,你们发现了什么?根据课件出示的活动卡,小组合作寻找规律。
出示小组合作学习的活动卡。(见课堂活动卡)
(5)小组汇报。
小组1:我们小组发现这两个算式的结果是一样的。
小组2:我们小组发现这两个算式的数字、运算符号、数字顺序、结果都相同,只有运算顺序不同。
小组3:我们小组发现三个数相乘,先乘前两个数,或者先乘后两个数,积不变。我们还举例进行了验证,如(30×5)×4=30×(5×4),125×(8×4)=(125×8)×4。
小组4:我们小组也发现了这个规律,并且根据加法结合律我们给这个规律起了个名字,叫乘法结合律。
师:同学们合作学习的成果真不少,你们发现的这个规律就是乘法结合律。
教师根据学生的汇报,板书:三个数相乘,先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
用字母表示:(a×b)×c=a×(b×c)
(6)反馈练习。
教材25页“做一做”中第二排的两道题。
提问:做这两道题时,你运用了什么运算定律?
设计意图:
在教学过程中,采用小组合作的学习方式,通过观察、比较、举例、验证等活动,使学生在解决具体问题的过程中掌握乘法交换律和结合律,既关注了学生探究的过程,又培养了学生归纳概括的能力。
《乘法结合律》的优秀教案3篇扩展阅读
《乘法结合律》的优秀教案3篇(扩展1)
——乘法交换律和结合律教案3篇
乘法交换律和结合律教案1
教学内容:
教材第33页的主题图,第34—35页的例1(乘法交换律)和例2(乘法结合律)以及练习五中的相关习题。
教学目标:
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点:
理解乘法交换律和乘法结合律。
教学难点:
能运用乘法交换律和乘法结合律进行简便计算。
教学准备:
多媒体。
教学方法:
尝试法、观察比较法。
教学过程:
一、复习导入
我们已经学过了哪些运算定律?请你用自己的话说一说,并说一说怎样用字母表示。
二、探究新知。
1、主题图引入
(1)出示主题图,让学生仔细观察,说一说图中告诉我们哪些信息。
(2)你能提出哪些问题?(指定多名学生说一说。)
2、学习例1。
(1)出示例1:负责挖坑、种树的一共有多少人?
(2)启发学生思考:要解答“负责挖坑、种树的一共有多少人?”这个问题,需要知道主题图中哪些相关信息?指定学生回答,课件出示、:一共有25个小组,每组里4人负责挖坑、种树。
(3)学生独立列式计算。教师根据学生回答,边板书:
4×25=100(人)25×4=100(人)
(4)教师引导学生观察,比较两种解法有何异同。
启发思考:这两个算式得数是否相等?都表示什么?两个算式之间可以用什么符号连接?(即:4×25=25×4)这个等式说明了什么?
(5)你能再举出几个这样的例子吗?(学生举例)
(6)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)
(7)教师引导学生归纳小结:交换两个因数的位置,积不变。这叫做乘法交换律。(学生齐读。)
(8)让学生用自己喜欢的方式表示乘法交换律:a×b=b×a。让学生说一说:这里的a、b可以是哪些数?
(9)拓展:找一找,主题图中哪个问题可以用乘法交换律来解决。
(10)我们学习哪些知识时用了乘法交换律?
(11)反馈练习:完成教材第35页“做一做”的第1题。
3、学习例2。
(1)出示例2:一共要浇多少桶水?
(2)启发学生思考:要解决这个问题又需要知道哪些信息?指定学生回答,教师边课件出示:一共有25个小组,每组要种5棵树,每棵树要浇2桶水。
(3)学生独立列式计算,教师巡视指导。指定不同算法的学生发表意见,教师根据学生回答边板书:(25×5)×2和25×(5×2)。
(4)教师引导学生比较两种算法的异同:计算顺序不同,但解决的是同一个问题,计算结果也相同,所以能用等号把这两个算式连起来。即:(25×5)×2=25×(5×2)
(5)哪一种方法计算起来更简便?
(6)你还能举出其他这样的例子吗?指定学生回答,教师边板书。
(7)观察上面几组等式,从中你能发现什么?你能用自己的话说一说你发现的规律吗?(分组讨论交流)你们能给乘法的这种规律起个名字吗?
(8)教师引导学生归纳小结:先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
(9)用字母怎样表示?(a×b)×c=a×(b×c)
(10)反馈练习:完成教材第37页的第2题。
4、乘法交换律和乘法结合律的应用。
(1)出示:怎样简便就怎样算?
5×37×2;125×4×8×25
(2)思考:怎样计算简便?
(3)学生独立完成,教师巡视指导,指定学生上台板演。
(4)集体订正,指定学生说一说各题运用了什么运算定律。
5、反馈练习:教材第35页“做一做”的第2题。
6、比较加法交换律和乘法交换律、加法结合律和乘法结合律,你发现了什么?(组织学生讨论后集体交流。)交换律是两数相加、相乘的规律,即交换加(因)数的位置,和(积)不变;结合律是三数相加、相乘的规律,既可以从左往右依次计算,也可以先把后两个数先相加(乘),和(积)不变。
三、小结
学生小结本节课的学习内容。
教师引导学生回忆整节课的学习要点。
四、作业
《练习册》第14页第1课时的所有习题。
乘法交换律和结合律教案2
【教材分析】
本课是北师大版数学实验教材四年级上册的一个教学内容,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程,通过对乘法结合律探索基本步骤的体验为学生今后的数学探索活动打下基础。
【学情分析】
学习方式上:四年级的学生,经历四年的课改实验,已具有一定的发现问题、提出问题、解决问题的能力。同学之间能够较好地合作交流与倾听。能比较主动地探究新知,运用已有的知识经验来学习新知。
知识技能上:在学习本课前,学生已经知道:25×4=100、125×8=1000以及整十整百整千数乘法计算比较简便。
【学习目标】
知识与技能:通过探索活动,发现乘法交换律、结合律,并用字母进行表示。在理解乘法结合律的基础上,会对一些算式进行简便计算。
过程与方法:经历数学探索过程,进一步体会探索的过程和方法。
情感、态度、价值观:感受数学探索的乐趣,培养自主探究问题的能力。
【学习重难点】
探索、发现、理解、应用乘法结合律。
【教学策略】
创设情境,组织探索,引导自主学习。
【教学过程】
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b﹦b×a叫做乘法交换律
师:a。b指的是什么?
(设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。)
三、探索乘法结合律
1、课件2出示情景图(书54页)
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察
上面:(3×5)×4
师:这个算式可以写成(5×3)×4吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3)可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3
师:你还可以怎样写?根据是什么?
生:(5×4)×3;3×(5×4)
(设计意图:通过对算式的变换,巩固乘法交换律)
师:细心的淘气在这些算式中发现了两组特别的算式,(师擦掉其它算式,留下(3×5)×4;3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4=3×(5×4)吗?
生思考回答。
(设计意图:通过对算式异同的比较,让学生自己发现规律,)
2、提出假设,举例验证
师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器
(学生在小组内举例交流讨论,教师巡视指导。)
师:谁愿意介绍一下你们举例的情况。
生:……
3、概括规律
师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?
生思考概括
师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律
三、运用模型,完成练习
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×4;42×125×8
生独立完成,小组交流后汇报
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
(设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算。对所学的
知识通过练习加以巩固运用。)
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
乘法交换律和结合律教案3
教学内容
苏教版小学数学四年级上册第61—62页例题,及62—63页“想想做做”的第1—4题。
设计思路
这部分内容是在教学了加法的运算律及相关简便运算后学习的。对于乘法运算律的教学,不应仅仅满足于学生理解、掌握乘法定律和运用乘法定律进行一些简便计算,更重要的是让学生经历一个数学学习的过程,在学习中受到科学方法、科学态度的启蒙教育,这才是教学的重点及难点。教学中,通过创设情境——猜谜语导入,激发学生的学习兴趣,让学生在“玩”中发现问题,提出猜想、进行验证、总结应用的思路进行的,应该说这样的思路是符合当今新教学理念的。乘法结合律的编排与加法结合律相似,但对学生探索的要求有所提高。教师应通过一些启发性的提问,引导学生探索并在小组里交流,发现并归纳出乘法结合律。
教学目标
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、培养学生观察、比较、分析、综合和归纳、概括等思维能力。
3、培养学生的探究意识和问题解决能力。增强合作意识,激发学生学习数学的兴趣。
教学重点
引导学生概括出乘法结合律,并运用乘法结合律进行简便计算。
教学难点
乘法结合律的推导过程是学习的难点。
教学准备
幻灯片。
教学过程
一、猜谜引入,揭示课题
师:猜谜:“弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。”
生:(积极举手,低声喊)纽扣。
师:为什么会想到是纽扣?
生:因为纽扣扣错了,衣服穿出去就很难看,会让人笑话。
师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。
师:用字母如何表示加法交换律、结合律呢?
板书:a+b=b+aa+b+c=a+(b+c)
师:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)
【设计意图】:用谜语拉开学习的`序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。
二、猜测验证,探索规律
1、大胆猜测。
师:猜一猜乘法可能有哪些运算定律?
学生根据已有的知识体验和迁移能够猜出:
生1:乘法可能有交换律。
生2:乘法可能有结合律。
生3:……
【设计意图】:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。
2、学习乘法交换律
师:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!请大家在小组内交流。(要求每人都把自己的想法介绍给自己的合作伙伴)
学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)
生1:我们小组经过讨论认为乘法有交换律。比如:2×4=4×2,3×5=5×3等等。两个乘数的位置变了,但它们的积不变。
生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。
生3:我们小组也认为乘法有交换律,比如我们班有6个小组,每个组有8人,求一共有多少人?可以列成算式:6×8=48,也可以用8×6=48。这就说明6乘8等于8乘6。因此,乘法和加法一样,也有交换律。
师:你们真了不起!看样子大家已经初步的了解和探索出乘法的交换律了,那你们能用自己的语言描述一下乘法交换律吗?
结论:两个数相乘,交换乘数的位置,积不变。
师:谁能用字母来表示呢?
生:a×b=b×a(板书)
【设计意图】:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。在此过程中,不仅培养了学生的探究意识,而且能够让学生获得成功的体验。
师:最近学校要开展冬季三项比赛,每个班的学生都在练习,看!这是老师在校园里看到的景象。(出示图片:踢毽子)
师:你能看图把下面的等式填写完整吗?
3×5=()×()
师:这就是乘法交换律。
【设计意图】:出示例题,巩固所学的新知。让学生在自己的探索中学习,体现了新课程下的自主学习。
3、学习乘法结合律。
生4:我们发现乘法也有结合律。如:(3×4)×6=3×(4×6)。
生5:我们也同意这种观点。
师:我们一起来证明一下这个结论是否正确?
出示例题2:华风小学6个年级的同学参加跳绳比赛,每个年级有5个班,每班有23人参加。一共有多少人参加比赛?
小组讨论,你们是怎样计算的?
生1:先算出一个年级参加的人数。
(23×5)×6=115×6=690(人)
生2:先算出全校有多少个班。
23×(5×6)=23×30=690(人)
师:你会把上面的两道算式写成一个等式吗?
(23×5)×6=×(×)
师:比较等号两边的算式,有什么相同点和不同点?
生:我觉得右边的算式计算简便,可以直接口算出答案。
师:非常好,我们在计算的时候,可以根据运算定律来简便计算,这样能节省时间。
【设计意图】:让学生自己感受交换两个乘数的位置,计算起来比较简便,为下面学习试一试部分奠定基础。而放手让学生去探索规律,这样不仅充分激发了学生学习的积极性,也使学生体会了发现新规律的方法。
师:请同学们也写几组这样的等式,把你的发现在小组里交流。能用自己的语言描述一下乘法结合律吗?
结论:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。
师:你说得很准确,有什么好方法帮助记忆?
生:我把加法结合律里的“加”换成“乘”,把“和”换成“积”,其余的不变。
生:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示“先把前两个数相乘”,第三个手指靠过来表示“再和第三个数相乘”;它等于“先把后两个手指靠在一起,再把第一个手指靠过来”。
师:这个记忆方法确实很好,我们大家一起来试一试。
师:怎样用字母表示乘法结合律?
板书:(a×b)×c=a×(b×c)
【设计意图】:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。
4、教学试一试(用简便方法计算)。
师:刚才我们已经学习了乘法的运算定律,现在看看同学们有没有掌握呢?
出示“试一试”上的习题。
(1)23×15×2
(2)5×37×2
放手让学生们自己做,并能说出各用了什么运算定律?请学生上黑板演示,其余学生独立完成。
师:运用了乘法的运算律,计算时你有什么体会?
生1:感觉简便了。
生2:计算的时候节约了时间,也不会算错了。
……
【设计意图】:新授了乘法结合律与交换律之后,直接教学试一试的内容,让学生自己体会乘法结合律与交换律对计算的简便之处,有利于以后计算时能快速运用。
三、巩固深化,应用拓展
师:回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?
生:我们验算乘法时就应用了乘法的交换律。
基本练习。想想做做的第1~3题。
发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。
8×6×9=()
【设计意图】:练习的层次鲜明,目标明确;促进学生构建新的知识网络。
四、全课小结,布置作业
今天这节课你学到了什么?
课堂作业:p62页第4题。
《乘法结合律》的优秀教案3篇(扩展2)
——《乘法结合律》说课稿3篇
《乘法结合律》说课稿1
一、教材分析:
本节课内容选自北师大版义务教育课程标准实验教科书第三单元。它是在学生掌握了乘法的意义、基本的多位数乘法计算方法和理解乘法交换律的基础上进行教学的,也是进一步学习乘法分配律和有关乘法简便算法的基础,是紧密连接前后教材的桥梁。
根据《新课程标准》的基本出发点,基本理念和学生以有的知识基础和学习经验,我把本节课的目标定为:
1、认知目标通过对问题情境的探索,使学生理解并掌握乘法结合律,并能应用乘法交换律和结合律进行简便计算。
2、能力目标培养学生初步的逻辑思维能力。
3、情感目标通过合作交流,培养学生的探究意识和合作学习的意识。
教学重点:理解乘法结合律的意义和乘法结合律的应用
难点:乘法结合律的实际应用
二、教法分析:
为了很好的完成上述教学目标,根据本节课是通过理解乘法结合律进行简便计算的教材特点和学生的认知规律。
在教学思路和策略上,采用小组讨论的方式,讨论最优计算方法,正确使用乘法结合律使计算简便;
在教学信息和感知材料的呈现上。主要采用多媒体课件演示突破重点,以此作为学生学习数学和解决问题的强有力的工具,改变学生的学习方式,使学生乐意并有更多的精力投入到现实的、探索性的教学活动中;
在思维活动的组织上,采取比较对照、区别几种计算方法的异同突出两个数相乘凑整的优越性及由实例列算式到抽象出乘法结合律定理的方法。
三、学情分析和学法指导:
关于乘法结合律,在三年级的简便算法的教学中已有所孕伏,这是在学生已有初步认识的基础上,再通过具体例子概括出一般规律,学生在获取新知的过程中,以学生的自主探索,合作讨论为主,讲练结合,改变了传统的单纯传授知识模式,而更注意发展智力,培养能力。创设问题的情境,比较两种算法的相同点和不同点,引起学生的学习动机。使学生感到有学习和探索的需要和兴趣,并积极地参与到学习活动中。通过小组讨论对比几种计算方法后总结出把两个能凑整的数放在一起相乘有利于计算的方便快捷。利用原来学过的乘法交换律字母表示形式迁移得出结合律的字母表示形式。在教学过程中,讲练结合,练习循序渐进,掌握新知。
四、教学模式:
这个部分我分为4个环节:创设情境、建立模型、解决问题、拓展延伸
(一)、创设情境:
“兴趣是最好的老师”,在教学中激发学生的兴趣是关键。因此我首先以学生熟悉的口算为切入点进行男女生竞赛。由此得出:两数相乘能够凑整的可以使计算比较准而快。
(二)建立模型:
这个环节我分4个版块进行:
1、情境引入
(课件出示)在这里,我注重利用学生已有的知识经验,组织学生讨论:这两种解法有什么相同点,又有什么不同点?让学生通过互相交流说出自己的解法,并让学生议一议每种方法。在学生评议的基础上,给予学生赞扬和鼓励。根据学生的发言,屏幕上逐一显示各种解决方法。在这一过程中学生的主体地位得到尊重,从被动接受知识为主动探/PGN0168.TXT/PGN索,在具体的操作中进行独立思考,在相互的交流中不断完善自己的方法,促进学生创新意识的培养。
2、讨论交流
在学生通过讨论交流得出结果,确定了哪一种计算方法更简便后(课件出示相等关系)继续观察几组算式及数字的特点,用自己能想到的方法确定两个算式之间的关系。(课件出示)这个设计环节是本节课的亮点,学生可以通过多种方法解决两个算式之间的关系,学生可能会通过计算得出,也可能利用乘法的意义和交换律得出,仔细观察的学生还可能会注意数字的特点和关系直接得出结果等等方法。从中体现了数学学习方法的多样性,学生的思维得到充分的拓展,也发展了学生的实践能力与创新精神。对于正确得出结论的给予鼓励。实践出真理。通过这几组算式的比较对照,学生会发现运算数字不变,改变运算顺序,结果不变。在得出规律后让学生自己举一些类似的例子。通过举例,培养了学生的发散思维能力,充分调动了学生的学习积极性,进一步加深了对规律的理解,为下一步总结定律做铺垫。起到点面结合的桥梁作用。
3、总结归纳(建立模型)
利用学生发现的规律总结出今天的教学重点,进行由个别到一般的教学,得出乘法结合律的定律,也由此揭示课题:乘法结合律
接着,根据学生原来掌握的乘法交换律字母表现的形式,利用知识的迁移得出乘法结合律的字母表现形式(课件出示)
在整个教学新知过程中,学生能够自主探索解决问题,充分体现学生的主体作用和老师的主导作用。
4、基础练习
学生进行随堂练习。练习作业是课堂教学中必不可少的活动,犹如工业生产中的“产后服务”。它可以巩固新知,加深记忆。(课件出示练习)
在练习过程中,如果出现学生对于(12×□)×5=□×(4×□)不懂填,那么可以马上结合字母公式找准A、B、C分别代表哪个位置的数,对号入座;在这里还要强调数字特点,括号的使用。
让学生判断各题是否符合乘法结合律,进一步加深了对乘法结合律的理解,也培养了学生的判断分析能力。
(三)解决问题
学习不是为了学而学,而是要把我们所学的知识灵活运用到我们的实际生活中,为我们的生活和进一步学习服务的。
(课件出示)
学生利用乘法结合律找到最简便的计算方法,增强了应用数学的意识,对用最优化的过程得出结果的学生给予大力表扬,并在此渗透德育教育,教育学生保护环境,讲究卫生,不乱扔垃圾,争做社会好公民!
学生练习后进行阶段性小结:在几个数相乘的时候,如果其中有两个数相乘得整十、整百-----的数,就可以利用乘法交换律和结合律,把它们先相乘,使计算简便。
(四)拓展延伸:
课堂练习的目的在于巩固本节课的教学重难点,并找出不足及时补漏补差。
(课件出示作业)
针对25×16,如果学生直接进行计算,则没有达到简算得目的,面对这种情况我会给学生回顾复习时的25×4,引导学生在算式中找出隐含的数字4,把16分成4×4再进行简算。如果学生是把16分成2×8,则全班讲解,这种方法也可以凑整简算,并提出表扬。
作业设计由浅入深,由易到难,既让学生巩固加强所学新知,又有意识的培养了学生的创新思维,使学生具有初步的创新精神和实践能力。
在课堂教学结束前引导学生从定律和简便计算的方法上进行课堂小结。
五、板书设计:(课件出示)
一节课的板书目的是要突破教材的重难点,在我的板书设计中,板书学生通过感知体现重要性的三个算式,乘法结合律的定律是教材的重点,字母公式体现了由个体到一般的概括。这些都充分体现了新课标的教育理念。
教师是教学的组织者和引导者,我设计的课堂教学,通过老师的组织引导给学生提供了自主探索的机会,学生在探索过程中真正懂得乘法结合律的意义。在数学情境中感知利用乘法结合律进行简便计算的优越性,实现了运算定律的由点到面的认识飞跃,让学生感觉数学学有所用,同时也体验到学习数学的乐趣。
法分析、学情分析和学法指导、教学模式和板书设计。
《乘法结合律》的优秀教案3篇(扩展3)
——乘法结合律优秀评课稿3篇
乘法结合律优秀评课稿1
听了赵老师讲的《乘法交换律和结合律》一课,感觉赵老师上课教态自然大方,语言干脆利落,引导孩子到位,关注孩子及时,整堂课对于乘法交换律的讲解很到位,利用旧知加法的交换律来引入,在学生旧知的基础上,利用“猜想——验证——得结论”的过程,对于乘法交换律,学生已经了解的很透彻。
而对于乘法结合律的讲解,我有以下几点想法:
(1)由乘法交换律到乘法结合律的过滤,环节比较突兀,可以再改动一下环节之间的过渡语言;
(2)对于出示的双语小学跳绳比赛的题目,处理的不是很到位,属于资源利用不透彻,有这个环节,而没有利用这个环节来处理学生的认知;
(3)在乘法结合律上浪费的时间有点多,所以课后习题处理的不到位,有些仓促;
(4)对于乘法交换律和结合律,应该是在我们的运算之中,孩子自己体会到应用了这两个运算律会让计算变得简单,而不是老师把这种简单的思想灌输给孩子,这个设计理念应该贯穿在课堂之中。
二磨:
听了赵老师的课,感觉赵老师的个性、讲课风格特别适合中年级的孩子特点,给人感觉也很舒服。
对于乘法交换律和结合律这一节课的设计,从以下几个方面来谈一下听课的感受:
首先,对于这节课,赵老师有三个方面做得很好。
一、整节课的教学目标确立明确,知识目标——乘法交换律和乘法结合律的探究和总结规律,情感目标——学生自己探究总结,有了兴趣;过程方法目标——经历探究的过程,有了探究知识总结规律的能力;
二、在教师自己设立教学目标明确的前提下,采用相应的教学策略,在巩固学生新知的基础上,利用“猜想——验证——得结论”的过程,学生很快掌握了乘法交换律,而又利用同样的环节来讲解乘法结合律,但是依然存在孩子对于
对于本节课的设计理念,本节课是让学生在加法的交换律和结合律的基础上,进行知识的迁移,完成乘法交换律的学习。而赵老师在这个基础上,又添加了猜想、验证和得结论的环节。在旧知识的基础上进行猜想,之后自己根据已有的知识进行举例验证,在这个基础上总结新知。这个环节在交换律的探知上很好,但是结合律的上面运用不是很好,应该在加以改正。
三磨:
听了赵老师的讲课,觉得最大的感触就是孩子的课堂常规,感觉赵老师确实在孩子的身上下了很大的功夫,之所以这样这堂课知识的讲授才可以利用猜想——验证——得结论的过程进展的比较顺利。
其次,赵老师的课堂对于知识的讲解,遵从了学生数学学习知识的过程,整堂课对于乘法交换律和乘法结合律的研究是在加法交换律和结合律的研究的基础之上,这样,整堂课不仅仅交给了孩子知识,而且交给了孩子学习数学新知的一种方法。
再次,在这堂课中,出现了一个小小的问题就是课堂的授课环节前松后紧,这样的原因主要是因为在前面乘法交换律的处理上,耗费的时间多了一点。
最后,这堂课处理的还有一点就是做的练习比较少,这样的话,这样的话就是孩子学习的新知,但是没有体会到新知利用的必要性和给我们的生活带来的简便。
乘法结合律优秀评课稿2
听了冯老师讲的乘法交换律和结合律一节课,对我的总体影响就是在整个教学过程,教师始终处于一个引导者的位置,让学生自己去观察、发现、归纳总结并验证,无论是新授还是应用环节,都给他们提供了自主探索的*台。让学生在学习中逐步学会迁移,学会从个别到一般的推理方法,从而进一步拓展了学生的思维。
听课之后认真总结她这一节课有以下几个靓点,值得同行学习和借鉴:
1、教师教学思路清晰,教学过程流畅,整节课教师从“情境导入—提出问题—解决问题—对比、抽象概括—实践应用”层次分明,清晰,教学重难点突出,可以看出老师对教材钻研透彻,吃透了教材,备透了学生,例比如:教学乘法交换律时,25×4和4×25,让生先计算出结果,然后问结果一样吗?可以列成一个什么样的等式?然后再让学生自说一说,还能说出这样的算式吗? 更好的感受 乘法交换律。再如,教学乘法结合律时,25×4×2 先求什么?再求什么?以及25×(4×2)先求什么?再求什么?教师始终抓住例题的数量关系来帮助学生理解乘法结合律。
2、加法运算律与乘法运算律在实质上没有多大的内在联系,加法交换律与乘法交换律只不过是词不同,加法交换律是加数、加数、和,乘法交换律是乘数、乘数、积;加法结合律是三个数相加,乘法结合律是三个数相乘;但教师充分运用了知识迁移的方法,复习了什么叫加法交换律和加法结合律?用字母怎样表示?用旧知推理出新知,找出知识间的生长点,很自然地过渡到新知。因而在新知的学习当中学生显得轻而易举。
3、教学中注重了新旧知识的连接,比如:在归纳出乘法交换律后,教师紧接着就问,在以前学习中,哪些地方用过它?学生说,乘法的验算,通过这样一个小环节设计,进一步使学生对乘法交换律的理解,并让生体会到乘法交换律实际就在我们身边。
4、教学中教师还注重了举例、观察和讨论,让学生通过举例,经历分析、综合、抽象的过程来验证自己的想法,从中能够自己概括出乘法运算律。在乘法交换律和结合律的总结上,都是通过情景解决问题,找算式的特点,然后自己再说些这样的算式,进一步说出这些算式的共性,然后语言总结出各自的内容。整个过程中,教师注重了学生的整体发展,让每一个学生都参与学习的全过程,体会学习方式的多样化。同时学生的语言也得到了很好的发展。
5、练习有坡度,层层递进。通过练习,进一步加深学生对乘法运算律的理解,让学生感受连乘时可以根据数据特点选用简便算法。深化学习内容,为学生提供了充分展示自己的思维的广阔空间,培养学生创新意识和探求精神。
对本节课不同的建议:在理解乘法交换律和结合律算式的特点并且学生自己会说这样的算式的基础上,我感觉应再注重找找这些算式等号两边有什么异同?进而再用语言总结出各自的内容。其次让学生在明白什么是交换律和结合律之后,把结合律和交换律紧密的联系起来,用一道算式变换来渗透结合律和交换律的联系,让两个内容融合在一起,为后面的学习奠定基础。
乘法结合律优秀评课稿3
20xx年3月20 日,我们数学组的全体教师开展了本期第一次教研活动,由汪玉红老师执教的乘法结合律的`运用这一节课,能让学生在学习了乘法结合律的知识后,运用该知识让学生解决生活中的问题,在解决问题的过程中运用不同的方法,选择最合适的方法,,探索运算定律在生活中的运用,本节课的重点是运算定律和选择方法。体现了课题研究的主题多样化训练和算法多样化。能让学生获取信息,理解信息,提出问题,自主解答。教学过程清晰,强化了训练,发挥了学生的主体作用。
1、复习到位。训练具体,教学内容适中。
2、发挥了学生的主体作用,培养了自学能力,
3、很好的突出了教学重点,联系生活解决问题。
4、应该加强直观教学。如画图等,理清信息之间的关系,直观的找到解决问题的途径。
5、应该设计好板书。把三种解题方法清晰的展示出来,便于学生理解乘法结合律。
《乘法结合律》的优秀教案3篇(扩展4)
——乘法结合律教学反思10篇
乘法结合律教学反思1
乘法交换律和乘法结合律是四年级数学下册的学习内容,是对乘法运算的一种优化。上课之后从以下几个不同的方面对本节课做反思。
一、思得
为了使学生能够尽快切入主题,我将主题图中的信息作了适量的调整,让学生尽快提出问题并解决问题,从中发现计算定律。学生能够主动参与,并能够自己理解并总结出定律及公式,效率较高。因为节省了时间,我将后面的练习增加了内容,从总结加法运算定律和乘法运算定律的特点,到填空并说出应用了那些定律,从口算中实际应用运算定律达到简化计算,再到实际计算,难度逐渐增加,符合学生的认知规律,能更好地让学会应用,感受到运算定律在简算中的重要作用。
二、思失
同样,节省时间的同时,一副完整的主题图让我分散开,虽然节省了学生分析已知条件的时间,但不利于学生对数学信息较多的应用题的分析和理解。同时,学生在举例来验证乘法交换律的时候,因为有些孩子已经预习或者之前已经掌握,当他们迫不及待地说出运算定律的名称,没有按照原本的教学设计进行的时候,我还是显得应付有些拘谨,备课的时候没有准备充分,或者*时这方面的锻炼就比较缺乏。看上去内容紧凑,练习丰富,但难免有些学生没有完全理解、学会应用,只是“人云亦云”,从最后的作业说明,我对学生关注不够全面。作为教师语言还不够规范,有的时候说“因数”,而有的时候却又说成“乘数”,还需要数学语言的锤炼。
三、思效
虽然,我在40分钟内完成了教学任务,但在后面的家庭作业和练习中,不难看出一部分孩子对计算定律掌握不够牢固,不知道什么时候该用,该怎么用。因而表面上的环环相扣,可能只符合一部分学有余力的孩子,还不能很好地照顾到每一个层次的学生。因而,不得不去对那些没有完全理解的孩子去“炒生饭”,反而浪费了最有利的教学时机。同样,在后面的应用题中,学生分析问题的能力还有待于加强,不能很好地区分哪些数学信息是有关联的,哪些没有关联,因而,在*时的教学中,不要放过任何一个机会,使学生形成遇到问题能够找到方法去分析的能力。
四、思改
本课存在的问题集中体现了本人教学中长期以来存在的缺点,本课中因为是让学生自己总结两个定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。还应该关注教学效率,不要盲目地赶时间,为了完成任务而去教学,应该更多地关注学生,不能被个别学优生的精彩发言蒙蔽双眼,从而忽视了那些还需要帮助的学生。同时,有些内容,不适合一带而过,而是应作为教学重难点去层层克服,所以要放慢速度,只有在一个知识点完全吸收后才能开展下一个教学环节!
关注教学的有效性,也就是关注学生对知识的理解掌握程度,作为教师不仅仅是完成教学中规定的任务,还应该熟悉本课在小学以及今后学段所学知识链中所起到的重要作用,把教材备透、备熟,加强教师基本功的练习,能够预设到个各种可能的发生,因而做到紧紧围绕学生的认知程度开展有利于教学的活动,达到让学生能够理解,并熟练应用的.程度。
乘法结合律教学反思2
在本节课教学中,我改变了传统的沉闷乏味课堂教学,根据教材编写意图,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。
第一、俗话说:良好的开端是成功的一半。
在设计新课引入阶段,开课时我说:“我们师生来个比赛好不好?”听到这同学们都异口同声的说“好”。课堂气氛一下就调动起来,同学们都目不转睛的盯着大屏幕。我立即出示几道题,很快的就说出了得数,学生看到老师算的这样快很吃惊,也很好奇。在学生诧异之际我出示了课题,告诉学生通过这节课的学习,你们也会算的向老师一样快。然后很自然的就导出了本节课的学习目标。这样以师生比赛导入,吸引了学生的注意力,调动了学生的兴趣,激发了学生学习的欲望。
第二、四年级的学生用自己的语言描述定律比较困难。
他们通过直观感知能够理解乘法结合律的涵义,也能够用具体的算式来验证乘法结合律,用字母、符号来表述乘法结合律,但是当让他们用自己的语言来描述乘法结合律时,却有点困难。因此 我在讲解乘法结合律的含义时,花了较多的时间让学生会用语言表达乘法结合律,如:通过验证表达结论——再用自己的话说说——再解释字母公式。从而促使学生能够真正理解定律的含义。
第三、运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的`过程,这是一个教学的重点,也是难点。
通过5×2、25×4、125×8的计算,使学生明确:这三组数的乘积是一个特殊的整十、整百、整千数,会给学生的计算带来很大的帮助,为后面的教学做好铺垫。通过比赛计算(15×25)×4和15×(25×4)谁的计算速度快,使学生自己体会到运用乘法结合律可以使计算变得简便。学习乘法结合律的目的是为了使计算简便,但我想这一点如果直接告诉学生,学生可能没有深刻的体验,因此我在这里采用了男女同学计算比赛的游戏,即调剂了计算课枯燥呆板的课堂气氛,又使学生自己有了深刻的体验,感受到学习乘法结合律的必要性。本节课我力求突出以学生发展为本的教学思想,整个教学过程体现以学生自主探索、合作交流为主,通过学生的观察、验证等形式,让学生通过大量的感性材料(算式等式)去感受,再经过学生的大胆交流,自然概括出乘法结合律的内容,较好的培养了学生的抽象思维能力。
第四、把黑板让给学生。
黑板不只是老师的舞台,更是学生展示自己的舞台。把课堂还给学生,把黑板交给学生。在交流展示时,我让各组的代表一边说想法,一边板书算法,学生非常愿意展示自己,展示自己小组的学习成果,语言流利,板书工整。在学生的脸上洋溢着学习的快乐感和成就感。
在本节课教学中,也存在一些不足之处:
第一、练习密度过小,这对学生及时巩固所学知识有一定影响;另练习的层次不是十分的明显,在练习中没有穿插变式练习,如:25×16等,让所有的学生都能有所收获;没有设计不能简算的连乘法,使学生灵活使用乘法结合律,让学生判断能否简算,防止学生的思维定势,从而培养学生具体问题具体分析的思想。
第二、在教学中,有点偏于关注部分学生,没注意与全体学生的交流,让所有人都能积极参与到学习中来,没注意学生的养成教育,教会学生“倾听”。
乘法结合律教学反思3
乘法结合律是学生学习运算定律的第二阶段,在此之前学生已经熟练掌握了加法交换律和结合律。因为乘法交换律和结合律与加法交换律和结合律基本相同,通过知识的.正迁移学生完全能够自己学会。因此我把本节课的学习目标定位为:让学生经历乘法结合律的探索过程,理解和掌握乘法结合律的内容并能用字母表示规律。运用乘法交换律,结合律达到简便计算;利用知识的正迁移,渗透规律的发现,验证的科学方法。培养自觉探索、合作学习的精神,并从中体验到成功感。
其实,很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:
一是教材本身和老师之前或多或少有渗透;
二是学生课外学习所得;
三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
探索数学的规律是有一个过程的,对这个过程的认识并不是教师传授的,而是需要学生自己体验、感受的。对学生已有的体验与感受及时地进行梳理,是提高探索能力的重要一环。最后,当学生已经概括出乘法的结合律后,如果能进一步追问:“请大家想一想,我们是怎样发现乘法结合律的呢?”通过学生对方方面面的反思,引出最后的概括。这样可能对学习方法的掌握会更深刻一些。虽然,学生要真正理解概括还需要大量地体验,但相信经历多次这样的过程,学生就能体会到探索的基本步骤。
反思整节课,本课中因为是让学生自己总结定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。但在课前对学生学情关注还是不够,做为代班四年的教师应该为此感到愧疚,应该想到有一部分孩子看不见屏幕上的字,课前就应该给孩子们将学案打印出来,那样能节省更多时间,效率会更高一些。
乘法结合律教学反思4
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味,而本节课我改变了传统的课堂教学。
本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,通过让学生帮助老师搭建领操台需要多少块方砖来发现问题,提出猜想。作为一节探索数学的规律课,对于乘法结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,这是一个教学的重点,也是难点。在课堂上不同的学生得到了不同的发展。同学们都在探索乘法交换律时,经历了发现规律、提出假设、验证假设、归纳规律的科学探索过程。在归纳乘法结合律时,思维特别积极活跃的同学,更发挥了他们的聪明才智,得到了进一步的提高。
在课堂教学中还存在一些有待改进的地方,特别是在评价方面,重视增加我与学生,以及学生与学生之间的评价,特别是同学之间的评价,更能激发学生的情绪。
乘法结合律教学反思5
一、对主题图使用的体会
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:3×4×5、3×5×4、4×5×3范围内,我们探索所需要的类似3×(4×5)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的“引导”得到,其实很不自然,有些强加的感觉。也许,直接呈现给学生会更好些。但是又与以前学习的知识是相矛盾的,如(3×4)×5,是不应该添括号的。
二、对教学内容的体会
在教学中发现,在具体应用时,学生对乘法结合律和乘法交换律是很难分清楚的。比如:25×125×8×4,学生处理的第一步是:25×4×125×8,第二步是:(25×4)×(125×8)。一般来说,学生认为第一步是依据乘法交换律,第二步是乘法结合律。显然这样的认识是不全面的。
我认为有些知识在小学阶段的教学可以模糊一点。
首先,在小学阶段,有些问题要搞清楚,是很难的。对乘法结合律和交换律,北师大教材没有文字定义,只有字母模型,参考人教版,它对乘法结合律和交换律的定义是:先把前两个数相乘,或者先把后两个数相乘,积不变;两个乘数交换位置,积不变,这叫做乘法交换律。较之原来浙教版,少了三个数相乘和两个数相乘的前提,结合它的教师用书,我们不难发现,它告诉大家的信息是:编者无奈,小学生的认知水*低,科学地分析计算过程中到底根据什么规律,对他们来说,太麻烦,也不好理解,只单纯产应用了结合律或交换律算了。
其次,没有这个必要的。在小学阶段不存在非要清楚区分乘法结合律与交换律,我们只要让学生理解乘法结合律是一种数学规律,意义是改变运算顺序,积不变;乘法交换律也是数学规律,改变乘数位置,积不变。至于一定要在三个数相乘和两个数相乘的前提下讨论的话,那学生在简便计算中,看不到三个数、两个数的模型,很难想到依据的定律是什么,只知道改变的什么。所以,从意义上理解定律更能让学生接受,然后让学生体会用定律模型能把这种变化规律表达地最简洁、本质。
三、关于对乘法运算定律与简便运算关系的思考
是不是学了乘法运算定律以后,学生才会简便运算的呢?有一个有趣的现象,教师应该有体会。很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:一是教材本身和老师之前或多或少有渗透;二是学生课外学习所得;三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
乘法分配律的作用只是为了简便运算吗?学生一想到乘法运算定律就想是简便运算,包括验证时的举例时。其实乘法运算定律是一种数*算规律,存在一切连乘算式中,它是这种乘法运算中可变化规律最本质、简洁的模型。这些模型代表的可变化规律,有时可以使一些计算简便。但它不是因为简便运算而产生的,它的存在也不是单单为了简便运算。这点机会可以让学生体会。
从运算定律到简便运算,就这样一个课时可以了吗?我认为不合理,建议教材在运算定律教学中,重点建立模型和理解意义之后,安排一节运算定律的练习课,不是强化对运算定律模型的认识,而是对运算定律意义及作用的体会。同时培养学生规范的表达简便运算过程的习惯。在学生碰到一些特殊运算时,能有意识地根据定律向有利于我们计算简便的方向转化,即具备简便运算的意识。
乘法结合律教学反思6
本课是北师大版数学四年级上册第三单元《乘法》中的第三节,它是在学习了两位数乘两位数乘法和初次体验有趣算式规律探索的基础上进一步拓展。乘法结合律这一内容与以往教材安排不同的是把认识乘法结合律放在学生自主探索中,通过创设情境活动,让学生逐步发现乘法计算中的特殊现象。这样安排不仅是让学生能发现乘法运算定律,更主要的是让学生经历探索过程。但是我根据学生的实际情况与对这节课内容的研究,进行了修改。
本课我着重突出了以下几点:
⒈充分挖掘教材结合学生实际进行再设计
。教材中对于乘法结合律和交换律的探索是两个分散的情景,在备课时我依据书上的过程设计教学,可试课时发现在探索结合律时,教师在引导出书上的算式上也有些牵强,而且我发现学生对乘法交换律理解的更容易。所以我将探索交换律的过程作为探索结合律的阶梯,由浅入深,由易到难会让学生更容易接受。因此,我改变了教材结构,先探索乘法交换律,突出整体性。收到了较好的效果。
⒉注意渗透一种科学的学习方法。
对于结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,了解所要学习内容的目的是什么。在学习中渗透运用定律解决问题的好处,让学生学得积极、主动。
⒊体现学生的自主学习,合作交流。课堂上老师应激发学生的学习积
极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
这节课基本完成了教学目标,我感觉比较好的地方:让学生经历探索的过程,发现问题——找出规律——举例验证——归纳结论。虽然学生要真正理解老师所做的概括还需要大量的体验,但我相信他们经历多次这样的尝试过程,一定能逐步理解并掌握探索的基本步骤。
这节课感觉存在不足:
1.学生初次用自己的语言描述乘法结合律比较困难。
2.在介绍结合律时,应及时引导学生发现“括号的位置不同”。
3.括号的位置不同说明什么?”这里引导不到位。
乘法结合律教学反思7
乘法交换律和乘法结合律是四年级数学下册的学习内容,是对乘法运算的一种优化。上课之后从以下几个不同的方面对本节课做反思。
一、思得
为了使学生能够尽快切入主题,我将主题图中的信息作了适量的调整,让学生尽快提出问题并解决问题,从中发现计算定律。学生能够主动参与,并能够自己理解并总结出定律及公式,效率较高。因为节省了时间,我将后面的练习增加了内容,从总结加法运算定律和乘法运算定律的特点,到填空并说出应用了那些定律,从口算中实际应用运算定律达到简化计算,再到实际计算,难度逐渐增加,符合学生的认知规律,能更好地让学会应用,感受到运算定律在简算中的重要作用。
二、思失
同样,节省时间的同时,一副完整的主题图让我分散开,虽然节省了学生分析已知条件的时间,但不利于学生对数学信息较多的应用题的分析和理解。同时,学生在举例来验证乘法交换律的时候,因为有些孩子已经预习或者之前已经掌握,当他们迫不及待地说出运算定律的名称,没有按照原本的教学设计进行的时候,我还是显得应付有些拘谨,备课的时候没有准备充分,或者*时这方面的锻炼就比较缺乏。看上去内容紧凑,练习丰富,但难免有些学生没有完全理解、学会应用,只是“人云亦云”,从最后的作业说明,我对学生关注不够全面。作为教师语言还不够规范,有的时候说“因数”,而有的时候却又说成“乘数”,还需要数学语言的锤炼。
三、思效
虽然,我在40分钟内完成了教学任务,但在后面的家庭作业和练习中,不难看出一部分孩子对计算定律掌握不够牢固,不知道什么时候该用,该怎么用。因而表面上的环环相扣,可能只符合一部分学有余力的孩子,还不能很好地照顾到每一个层次的学生。因而,不得不去对那些没有完全理解的孩子去“炒生饭”,反而浪费了最有利的教学时机。同样,在后面的应用题中,学生分析问题的能力还有待于加强,不能很好地区分哪些数学信息是有关联的,哪些没有关联,因而,在*时的教学中,不要放过任何一个机会,使学生形成遇到问题能够找到方法去分析的能力。
四、思改
本课存在的问题集中体现了本人教学中长期以来存在的缺点,本课中因为是让学生自己总结两个定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。还应该关注教学效率,不要盲目地赶时间,为了完成任务而去教学,应该更多地关注学生,不能被个别学优生的精彩发言蒙蔽双眼,从而忽视了那些还需要帮助的学生。同时,有些内容,不适合一带而过,而是应作为教学重难点去层层克服,所以要放慢速度,只有在一个知识点完全吸收后才能开展下一个教学环节!
关注教学的有效性,也就是关注学生对知识的理解掌握程度,作为教师不仅仅是完成教学中规定的任务,还应该熟悉本课在小学以及今后学段所学知识链中所起到的重要作用,把教材备透、备熟,加强教师基本功的练习,能够预设到个各种可能的发生,因而做到紧紧围绕学生的认知程度开展有利于教学的活动,达到让学生能够理解,并熟练应用的程度。
乘法结合律教学反思8
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味,而本节课我改变了传统的课堂教学.
本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,通过让学生帮助老师搭建领操台需要多少块方砖来发现问题,提出猜想.作为一节探索数学的规律课,对于乘法结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,这是一个教学的重点,也是难点。在课堂上不同的学生得到了不同的发展。同学们都在探索乘法交换律时,经历了发现规律、提出假设、验证假设、归纳规律的科学探索过程。在归纳乘法结合律时,思维特别积极活跃的同学,更发挥了他们的聪明才智,得到了进一步的提高。
在课堂教学中还存在一些有待改进的地方,特别是在评价方面,重视增加我与学生,以及学生与学生之间的评价,特别是同学之间的评价,更能激发学生的情绪。
乘法结合律教学反思9
本节课我根据教材编写意图,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。上完这一课我收获以下几点:
1、充分挖掘教材进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识。
2、两次的验证活动安排设计得较好,第一次借直观图形进行验证,第二次在学生获得感性认识的基础上,启发学生思考第一次的发现是否适合其他算式呢,引导学生扩大验证的范围,用抽象的算式举例验证,为发现、概括乘法结合律奠定基础。
3、及时帮助学生梳理思路,掌握探索的基本步骤。
探索数学规律是有一个过程的,这个过程需要学生自己体验、感受。本课教学,我在学生已经概括出乘法结合律后,没有立即组织学生进行相关内容的练习,而是询问学生:刚才我们是怎样发现乘法结合律呢?对学生刚刚经历的体验与感受及时进行梳理总结。
在教学中我也发现了一些问题,如:学生初次用自己的语言描述乘法结合律比较困难,会出现表达不够严谨的现象,此时,我引导得不够巧妙,有将自己的想法强加给学生的意图。另外,在归纳总结探索步骤时,学生归纳得较为迟钝,是否前面的探索经历对学生而言不够深刻。
乘法结合律教学反思10
一、对主题图使用的体会
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:3×4×5、3×5×4、4×5×3范围内,我们探索所需要的类似3×(4×5)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的“引导”得到,其实很不自然,有些强加的感觉。也许,直接呈现给学生会更好些。但是又与以前学习的知识是相矛盾的,如(3×4)×5,是不应该添括号的。
二、对教学内容的体会
在教学中发现,在具体应用时,学生对乘法结合律和乘法交换律是很难分清楚的。比如:25×125×8×4,学生处理的第一步是:25×4×125×8,第二步是:(25×4)×(125×8)。一般来说,学生认为第一步是依据乘法交换律,第二步是乘法结合律。显然这样的认识是不全面的。
我认为有些知识在小学阶段的教学可以模糊一点。
首先,在小学阶段,有些问题要搞清楚,是很难的。对乘法结合律和交换律,北师大教材没有文字定义,只有字母模型,参考人教版,它对乘法结合律和交换律的定义是:先把前两个数相乘,或者先把后两个数相乘,积不变;两个乘数交换位置,积不变,这叫做乘法交换律。较之原来浙教版,少了三个数相乘和两个数相乘的前提,结合它的教师用书,我们不难发现,它告诉大家的信息是:编者无奈,小学生的认知水*低,科学地分析计算过程中到底根据什么规律,对他们来说,太麻烦,也不好理解,只单纯产应用了结合律或交换律算了。
其次,没有这个必要的。在小学阶段不存在非要清楚区分乘法结合律与交换律,我们只要让学生理解乘法结合律是一种数学规律,意义是改变运算顺序,积不变;乘法交换律也是数学规律,改变乘数位置,积不变。至于一定要在三个数相乘和两个数相乘的前提下讨论的话,那学生在简便计算中,看不到三个数、两个数的模型,很难想到依据的定律是什么,只知道改变的什么。所以,从意义上理解定律更能让学生接受,然后让学生体会用定律模型能把这种变化规律表达地最简洁、本质。
三、关于对乘法运算定律与简便运算关系的思考
是不是学了乘法运算定律以后,学生才会简便运算的呢?有一个有趣的现象,教师应该有体会。很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:一是教材本身和老师之前或多或少有渗透;二是学生课外学习所得;三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
乘法分配律的作用只是为了简便运算吗?学生一想到乘法运算定律就想是简便运算,包括验证时的举例时。其实乘法运算定律是一种数*算规律,存在一切连乘算式中,它是这种乘法运算中可变化规律最本质、简洁的模型。这些模型代表的可变化规律,有时可以使一些计算简便。但它不是因为简便运算而产生的,它的存在也不是单单为了简便运算。这点机会可以让学生体会。
从运算定律到简便运算,就这样一个课时可以了吗?我认为不合理,建议教材在运算定律教学中,重点建立模型和理解意义之后,安排一节运算定律的练习课,不是强化对运算定律模型的认识,而是对运算定律意义及作用的体会。同时培养学生规范的表达简便运算过程的习惯。在学生碰到一些特殊运算时,能有意识地根据定律向有利于我们计算简便的方向转化,即具备简便运算的意识。
《乘法结合律》的优秀教案3篇(扩展5)
——乘法结合律教学反思10篇
乘法结合律教学反思1
在本节课教学中,我改变了传统的沉闷乏味课堂教学,根据教材编写意图,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。
第一、俗话说:良好的开端是成功的一半。
在设计新课引入阶段,开课时我说:“我们师生来个比赛好不好?”听到这同学们都异口同声的说“好”。课堂气氛一下就调动起来,同学们都目不转睛的盯着大屏幕。我立即出示几道题,很快的就说出了得数,学生看到老师算的这样快很吃惊,也很好奇。在学生诧异之际我出示了课题,告诉学生通过这节课的学习,你们也会算的向老师一样快。然后很自然的就导出了本节课的学习目标。这样以师生比赛导入,吸引了学生的注意力,调动了学生的兴趣,激发了学生学习的欲望。
第二、四年级的学生用自己的语言描述定律比较困难。
他们通过直观感知能够理解乘法结合律的涵义,也能够用具体的算式来验证乘法结合律,用字母、符号来表述乘法结合律,但是当让他们用自己的语言来描述乘法结合律时,却有点困难。因此 我在讲解乘法结合律的含义时,花了较多的时间让学生会用语言表达乘法结合律,如:通过验证表达结论——再用自己的话说说——再解释字母公式。从而促使学生能够真正理解定律的含义。
第三、运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的`过程,这是一个教学的重点,也是难点。
通过5×2、25×4、125×8的计算,使学生明确:这三组数的乘积是一个特殊的整十、整百、整千数,会给学生的计算带来很大的帮助,为后面的教学做好铺垫。通过比赛计算(15×25)×4和15×(25×4)谁的计算速度快,使学生自己体会到运用乘法结合律可以使计算变得简便。学习乘法结合律的目的是为了使计算简便,但我想这一点如果直接告诉学生,学生可能没有深刻的体验,因此我在这里采用了男女同学计算比赛的游戏,即调剂了计算课枯燥呆板的课堂气氛,又使学生自己有了深刻的体验,感受到学习乘法结合律的必要性。本节课我力求突出以学生发展为本的教学思想,整个教学过程体现以学生自主探索、合作交流为主,通过学生的观察、验证等形式,让学生通过大量的感性材料(算式等式)去感受,再经过学生的大胆交流,自然概括出乘法结合律的内容,较好的培养了学生的抽象思维能力。
第四、把黑板让给学生。
黑板不只是老师的舞台,更是学生展示自己的舞台。把课堂还给学生,把黑板交给学生。在交流展示时,我让各组的代表一边说想法,一边板书算法,学生非常愿意展示自己,展示自己小组的学习成果,语言流利,板书工整。在学生的脸上洋溢着学习的快乐感和成就感。
在本节课教学中,也存在一些不足之处:
第一、练习密度过小,这对学生及时巩固所学知识有一定影响;另练习的层次不是十分的明显,在练习中没有穿插变式练习,如:25×16等,让所有的学生都能有所收获;没有设计不能简算的连乘法,使学生灵活使用乘法结合律,让学生判断能否简算,防止学生的思维定势,从而培养学生具体问题具体分析的思想。
第二、在教学中,有点偏于关注部分学生,没注意与全体学生的交流,让所有人都能积极参与到学习中来,没注意学生的养成教育,教会学生“倾听”。
乘法结合律教学反思2
在加法运算律教学时,学生对这块知识不感兴趣,有部分学生学习过此类知识,认为自己已经学习过了,掌握了,可是作业做下来并不理想。如让学生根据算式判断用的是什么运算律,部分学生判断还不准确,只知道有些题目怎么做并不知道为什么是这样做?于是我把两课时的教学改成了三课时,重新梳理知识。
在学习乘法运算律时,我让学生自己先说说你认为乘法会有什么样的运算律?不管是已经学习过的还是其他学生(有加法运算律的基础)都能说出乘法交换律a×b=b×a,乘法结合律(a×b)×c=a×(b×c)。看学生得意的表情,我问了一句:“那你知道为什么是a×b=b×a和(a×b)×c=a×(b×c)吗?”学生一个个的说理由,生1:“因为交换两个乘数的位置,它们的积不变。”生2:“因为只是交换了两个乘数的位置,这两个乘数并没有发生改变,所以积不变。”再喊了几名学生理由都是差不多的,这时班上陈某某发言了,他说:“我把a看成1,b看成0,那么1乘0得0,交换位置后0乘1还是得0,所以a×b=b×a。”没想到他的发言竟然引起了全班的哄堂大笑,他不好意思的坐下去了。可是我却做了一个和大家不一样的举动,我大声的说了一句:“非常好!”其他学生有点闹不明白了,一个个看着我……“他用举例的的方法证明了这个运算律是对的。其实在我们的数学学习过程中,经常在一系列的题目中发现一些对这类题目的规律,我们就可以总结归纳,有些总结出来的对所有的此类的题目都适用,有些对一些题目适用。以后在我们的数学学习中要学会观察,找到规律,总结方法。陈某某虽然没有总结规律,可是他用举例的方法从另一个方面来证明也是很了不起的。”我的一番话说的他很不好意思,可能我的话有很多学生都听不懂,但我就是想以此例告诉学生不仅要“知其然”而且要“知其所以然”。有一名学生根据前面学习加法时遇到的用加法交换律检验,想到了用以前学习乘法计算时的验算,交换乘数的位置再算一遍后得到的积是一样的来证明规律的存在。
课本中让学生在解决具体的情境中数学问题,引出一组算式,让学生初步理解两个乘数交换位置,积不变,再让学生通过举例,经历分析、综合、抽象的过程,得出乘法交换律,并用字母表示。乘法结合律的编排和加法结合律的相似,引导学生经过小组讨论发现规律。如果此课是在我以前教学,可能就如教材安排的学生经历这一系列的探索,发现规律,然后让学生通过试一试巩固规律,特别是让学生用自己喜欢的方式去表达规律时,学生可能想到很多不一样的自己喜欢的方式,可是在这边的教学一点点都没有实现,因为大部分学生已经知道了用a和b的形式来表示。可是我在教学加法运算律时,按照我预设的上课,活动没有开展起来,课后我反思,是我没有考虑学生的实际情况,这边的学生在课前有多种途径去在上课之前接受知识,不管是主动还是被动,大部分学生都已经被灌输了a×b=b×a等等之类的知识。学生在上课时就认为自己已经懂了,不用听了;而在以前的学校,学生没有这么多途径,对于他们来说书上的知识就时新知识,他们知识的获得除了课前自己预习外,更多是在课堂上去探索,所以他们课堂上注意力集中,对规律的探索有更多的兴趣,更能经历知识的形成和发展的过程。
在上课时因为学生的特殊情况,在总结出规律后,针对学生的.掌握情况,我没有出现试一试,而是直接出现两道题目让学生去进行比赛,(15×17×2和17×(15×2))让学生观察后任选一题进行,看看谁做的快?大部分学生选了第2题,有个别学生选第一题但也用了运算律简便计算。比赛完毕,我让学生汇报,问为什么你会选第一题,体会到把15和2相乘的优越性。
乘法结合律教学反思3
乘法结合律是学生学习运算定律的第二阶段,在此之前学生已经熟练掌握了加法交换律和结合律。因为乘法交换律和结合律与加法交换律和结合律基本相同,通过知识的.正迁移学生完全能够自己学会。因此我把本节课的学习目标定位为:让学生经历乘法结合律的探索过程,理解和掌握乘法结合律的内容并能用字母表示规律。运用乘法交换律,结合律达到简便计算;利用知识的正迁移,渗透规律的发现,验证的科学方法。培养自觉探索、合作学习的精神,并从中体验到成功感。
其实,很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:
一是教材本身和老师之前或多或少有渗透;
二是学生课外学习所得;
三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
探索数学的规律是有一个过程的,对这个过程的认识并不是教师传授的,而是需要学生自己体验、感受的。对学生已有的体验与感受及时地进行梳理,是提高探索能力的重要一环。最后,当学生已经概括出乘法的结合律后,如果能进一步追问:“请大家想一想,我们是怎样发现乘法结合律的呢?”通过学生对方方面面的反思,引出最后的概括。这样可能对学习方法的掌握会更深刻一些。虽然,学生要真正理解概括还需要大量地体验,但相信经历多次这样的过程,学生就能体会到探索的基本步骤。
反思整节课,本课中因为是让学生自己总结定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。但在课前对学生学情关注还是不够,做为代班四年的教师应该为此感到愧疚,应该想到有一部分孩子看不见屏幕上的字,课前就应该给孩子们将学案打印出来,那样能节省更多时间,效率会更高一些。
乘法结合律教学反思4
传统的课堂教学是教师讲、学生听,依据教材给的例子,通过观察,发现规律,再进行模仿练习,课堂沉闷乏味,而本节课我改变了传统的课堂教学。
本节设计中,在新课引入阶段,创设了生活情境,从学生已有的生活经验和知识出发,通过让学生帮助老师搭建领操台需要多少块方砖来发现问题,提出猜想。作为一节探索数学的规律课,对于乘法结合律的教学,不应仅仅满足于学生理解、掌握乘法结合律,会运用乘法结合律进行一些简便计算,重要的是让学生经历一个数学学习的过程,这是一个教学的重点,也是难点。在课堂上不同的学生得到了不同的发展。同学们都在探索乘法交换律时,经历了发现规律、提出假设、验证假设、归纳规律的科学探索过程。在归纳乘法结合律时,思维特别积极活跃的同学,更发挥了他们的聪明才智,得到了进一步的提高。
在课堂教学中还存在一些有待改进的地方,特别是在评价方面,重视增加我与学生,以及学生与学生之间的评价,特别是同学之间的评价,更能激发学生的情绪。
乘法结合律教学反思5
1、乘法分配律既要注重它的外形结构特点,更要注重其内涵。
乘法分配率的结构特点,即两数的和乘一个数(先加后乘)=两个积的和(先乘后加),使学生从表象上进行初步感知。从而理解(4+2)×25=4×25+2×25是相等的,即左边表示6个25,右边也表示6个25,所以(4+2)×25=4×25+2×25。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;练习中可以提问:每组算式有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?125×88①竖式计算;②125×8×11;③125×(80+8);④125×(100-12);⑤(100+25)×88;⑥(100+20+5)×88等等。101×89①竖式计算;②(100+1)×89;③101×(80+9);101×(100-11);101×(90-1)等。对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便?什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行计算的条件是不一样的。乘法结合律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。
乘法结合律教学反思6
乘法交换律和乘法结合律是四年级数学下册的学习内容,是对乘法运算的一种优化。上课之后从以下几个不同的方面对本节课做反思。
一、思得
为了使学生能够尽快切入主题,我将主题图中的信息作了适量的调整,让学生尽快提出问题并解决问题,从中发现计算定律。学生能够主动参与,并能够自己理解并总结出定律及公式,效率较高。因为节省了时间,我将后面的练习增加了内容,从总结加法运算定律和乘法运算定律的特点,到填空并说出应用了那些定律,从口算中实际应用运算定律达到简化计算,再到实际计算,难度逐渐增加,符合学生的认知规律,能更好地让学会应用,感受到运算定律在简算中的重要作用。
二、思失
同样,节省时间的同时,一副完整的主题图让我分散开,虽然节省了学生分析已知条件的时间,但不利于学生对数学信息较多的应用题的分析和理解。同时,学生在举例来验证乘法交换律的时候,因为有些孩子已经预习或者之前已经掌握,当他们迫不及待地说出运算定律的名称,没有按照原本的教学设计进行的时候,我还是显得应付有些拘谨,备课的时候没有准备充分,或者*时这方面的锻炼就比较缺乏。看上去内容紧凑,练习丰富,但难免有些学生没有完全理解、学会应用,只是“人云亦云”,从最后的作业说明,我对学生关注不够全面。作为教师语言还不够规范,有的时候说“因数”,而有的时候却又说成“乘数”,还需要数学语言的锤炼。
三、思效
虽然,我在40分钟内完成了教学任务,但在后面的家庭作业和练习中,不难看出一部分孩子对计算定律掌握不够牢固,不知道什么时候该用,该怎么用。因而表面上的环环相扣,可能只符合一部分学有余力的孩子,还不能很好地照顾到每一个层次的学生。因而,不得不去对那些没有完全理解的孩子去“炒生饭”,反而浪费了最有利的教学时机。同样,在后面的应用题中,学生分析问题的能力还有待于加强,不能很好地区分哪些数学信息是有关联的,哪些没有关联,因而,在*时的教学中,不要放过任何一个机会,使学生形成遇到问题能够找到方法去分析的能力。
四、思改
本课存在的问题集中体现了本人教学中长期以来存在的缺点,本课中因为是让学生自己总结两个定律,所以应该放手大胆地让学生多做、多说、多练,形成师生互动,生生互动的教学态势。还应该关注教学效率,不要盲目地赶时间,为了完成任务而去教学,应该更多地关注学生,不能被个别学优生的精彩发言蒙蔽双眼,从而忽视了那些还需要帮助的学生。同时,有些内容,不适合一带而过,而是应作为教学重难点去层层克服,所以要放慢速度,只有在一个知识点完全吸收后才能开展下一个教学环节!
关注教学的有效性,也就是关注学生对知识的理解掌握程度,作为教师不仅仅是完成教学中规定的任务,还应该熟悉本课在小学以及今后学段所学知识链中所起到的重要作用,把教材备透、备熟,加强教师基本功的练习,能够预设到个各种可能的发生,因而做到紧紧围绕学生的认知程度开展有利于教学的活动,达到让学生能够理解,并熟练应用的程度。
乘法结合律教学反思7
本节课的主要内容是经历探索乘法交换律、乘法结合律的过程,理解并用字母表示乘法交换律、结合律,能运用乘法交换律、结合律进行简便运算。教学重点是经历探索乘法交换律、乘法结合律的过程;难点是能运用乘法交换律、结合律进行简便运算。
上完这节课后,我的感触很深,我对这节课值得反思的东西还是挺多的。通过本节课的学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。首先我在通过复习加法运算定律引入课题,然后让学生读图根据已知条件提出问题,对问题解答。这里的每个问题都可以列出两个不同的算式,因为是对同一问题的解答所以学生能够理解把这两个算式写成一个等式。之后让学生观察这个等式。提出问题“这个等式有什么特点”让学生思考,课后我觉得这个问题提的不是很清楚,如果问“等式的左右两有什么异同”学生也许会更容易的发现这一规律。
课前备课时,我觉得这两个定律都很简单,学生能够自己发现规律,现在想一想,我可以在讲乘法交换律时,让学生自己观察,而第二个乘法结合律稍有一点难度,可以采用小组讨论的形式解决问题。
各个环节的衔接不是很紧凑,本来后面还安排了两道应用题,但由于时间关系没来得及做。
乘法结合律教学反思8
本节课我根据教材编写意图,精心设计教学环节组织学生进行乘法结合律的发现与探索活动。这次的数学活动基本完成了预设的学习目标。上完这一课我收获以下几点:
1、充分挖掘教材进行再设计,组织学生估计,多角度观察与多种算法,这一环节设计安排得较好,做到充分利用教材较好地培养了学生的估计意识。
2、两次的验证活动安排设计得较好,第一次借直观图形进行验证,第二次在学生获得感性认识的基础上,启发学生思考第一次的发现是否适合其他算式呢,引导学生扩大验证的范围,用抽象的算式举例验证,为发现、概括乘法结合律奠定基础。
3、及时帮助学生梳理思路,掌握探索的基本步骤。
探索数学规律是有一个过程的,这个过程需要学生自己体验、感受。本课教学,我在学生已经概括出乘法结合律后,没有立即组织学生进行相关内容的练习,而是询问学生:刚才我们是怎样发现乘法结合律呢?对学生刚刚经历的体验与感受及时进行梳理总结。
在教学中我也发现了一些问题,如:学生初次用自己的语言描述乘法结合律比较困难,会出现表达不够严谨的现象,此时,我引导得不够巧妙,有将自己的想法强加给学生的意图。另外,在归纳总结探索步骤时,学生归纳得较为迟钝,是否前面的探索经历对学生而言不够深刻。
乘法结合律教学反思9
这节课的教学目的是:让学生通过计算、观察、交流、归纳等活动,经历探索乘法结合律的全过程,能用字母表示乘法结合律,在理解乘法结合律的基础上能运用乘法结合律进行简便计算。
在授课过程中,我比较注重学生认知规律和探索规律的方法与过程,放手让学生自己去发现,把发现的现象用生活中的事例去加以解释,并引导他们用自己的语言归纳总结出乘法的结合律:三个数相乘,先把前两个数相乘,再乘第三个数;或者先把后两个数相乘,再乘第一个数;或者先把第一个数和第三个数相乘,再乘第二个数,积不变。并与学生自己归纳总结的乘法结合律作比较,学生当时就把这个规律牢记在心中,效果较好。在此基础上,让学生用字母将乘法的结合律表示出来,学生写出了以下的等式:(a×b)×c=a×(b×c)=(a×c)×b。
在乘法结合律的运用中努力让学生掌握三种情况:
1.计算连乘时,如果其中两个乘数的积是整千、整百、整十数时,可以利用乘法交换律或乘法结合律先把这两个数相乘,再与其他数相乘,这样会使计算简便。
2.在乘法中,如果一个乘数是25(或125),另一个乘数正好是4(或8)的倍数,则将另一个乘数分解成4(或8)与其他数相乘的形式,再利用乘法结合律先算25×4(或125×8),这样会使计算简便。
3.特殊数的乘积:5×2=10 25×4=100 125×8=1000 等。
但由于学生的基础与能力的关系,其结果还是不尽如人意。
乘法结合律教学反思10
一、对主题图使用的体会
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:3×4×5、3×5×4、4×5×3范围内,我们探索所需要的类似3×(4×5)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的“引导”得到,其实很不自然,有些强加的感觉。也许,直接呈现给学生会更好些。但是又与以前学习的知识是相矛盾的,如(3×4)×5,是不应该添括号的。
二、对教学内容的体会
在教学中发现,在具体应用时,学生对乘法结合律和乘法交换律是很难分清楚的。比如:25×125×8×4,学生处理的第一步是:25×4×125×8,第二步是:(25×4)×(125×8)。一般来说,学生认为第一步是依据乘法交换律,第二步是乘法结合律。显然这样的认识是不全面的。
我认为有些知识在小学阶段的教学可以模糊一点。
首先,在小学阶段,有些问题要搞清楚,是很难的。对乘法结合律和交换律,北师大教材没有文字定义,只有字母模型,参考人教版,它对乘法结合律和交换律的定义是:先把前两个数相乘,或者先把后两个数相乘,积不变;两个乘数交换位置,积不变,这叫做乘法交换律。较之原来浙教版,少了三个数相乘和两个数相乘的前提,结合它的教师用书,我们不难发现,它告诉大家的信息是:编者无奈,小学生的认知水*低,科学地分析计算过程中到底根据什么规律,对他们来说,太麻烦,也不好理解,只单纯产应用了结合律或交换律算了。
其次,没有这个必要的。在小学阶段不存在非要清楚区分乘法结合律与交换律,我们只要让学生理解乘法结合律是一种数学规律,意义是改变运算顺序,积不变;乘法交换律也是数学规律,改变乘数位置,积不变。至于一定要在三个数相乘和两个数相乘的前提下讨论的话,那学生在简便计算中,看不到三个数、两个数的模型,很难想到依据的定律是什么,只知道改变的什么。所以,从意义上理解定律更能让学生接受,然后让学生体会用定律模型能把这种变化规律表达地最简洁、本质。
三、关于对乘法运算定律与简便运算关系的思考
是不是学了乘法运算定律以后,学生才会简便运算的呢?有一个有趣的现象,教师应该有体会。很多学生在学习乘法结合律与交换之前,已经会简便运算了。我认为原因有三:一是教材本身和老师之前或多或少有渗透;二是学生课外学习所得;三是来自学生自身的计算经验。他们根据自己经验,模糊地知道在乘法算式中,改变乘数的位置、改变运算顺序,结果是不变的,出于需要有时就会对算式进行转换,他们很显然不是通过乘法交换律、结合律。看来,会不会学生是对定律的意义现有模糊认识,然后我们给他们提炼一个本质、简洁的模型的,而这个模型的作用是为他以前的简便算法找到一个数学上的依据。
乘法分配律的作用只是为了简便运算吗?学生一想到乘法运算定律就想是简便运算,包括验证时的举例时。其实乘法运算定律是一种数*算规律,存在一切连乘算式中,它是这种乘法运算中可变化规律最本质、简洁的模型。这些模型代表的可变化规律,有时可以使一些计算简便。但它不是因为简便运算而产生的,它的存在也不是单单为了简便运算。这点机会可以让学生体会。
从运算定律到简便运算,就这样一个课时可以了吗?我认为不合理,建议教材在运算定律教学中,重点建立模型和理解意义之后,安排一节运算定律的练习课,不是强化对运算定律模型的认识,而是对运算定律意义及作用的体会。同时培养学生规范的表达简便运算过程的习惯。在学生碰到一些特殊运算时,能有意识地根据定律向有利于我们计算简便的方向转化,即具备简便运算的意识。
《乘法结合律》的优秀教案3篇(扩展6)
——《乘法交换律和结合律》的教学反思3篇
《乘法交换律和结合律》的教学反思1
授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。这节课是在学生已经掌握了乘法的计算方法的基础上进行教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,我主要通过学生的观察、验证、归纳、运用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生去感受数学问题的探索性,培养学生学习数学的兴趣。教学时,我是先讲乘法交换律,再讲结合律,因为乘法交换律在学生以前的学习中都有渗透,而乘法结合律的生成也有赖于乘法交换律,所以先讲交换律可以以旧引新,为学生下一步学习结合律做好铺垫。
在这次教学中,也存在着许多不足。
一、语言不够严谨,要简洁、精炼。在叙述乘法结合律时,要紧扣乘法结合律的定义。
二、要注意一下细节问题。在学生讨论、举例时,要求孩子验证等式是否成立时,要求叙述得不够严谨。
三、针对学生错误的回答,解释得不是很到位,需要针对孩子的回答,来着重讲解。
四、对于教材提供的主题图的体会:
教材所提供的主题图是计算正方体的个数,在计算中,出现解题策略的多样化,从而产生我们需要的素材。教后,发现学生能呈现的算法基本上局限在:345、354、453范围内,我们探索所需要的类似3(45)的算式是较难主动再现的。因此,教学中,要通过刻意的人为的引导得到,其实很不自然,有些强加的感觉。也许,直接呈现乘法结合律的事例给学生会更好些。
由于经验的欠缺,对课堂的调控与把握还是做得不到位。有时候我的语言有些随意,不够正式,评价语言不够丰富,这是非常不足之处,既而需要我今后努力学习的方向。还有通过有其他老师的点评,让我明白老师的辅助作用及提问题的技巧性也很重要的,只有这样才能更好地达到课堂的有效教学。
今后的工作中,要多向以下几个方面努力:
1.多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2.加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3.认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。
《乘法交换律和结合律》的教学反思2
本课时的教学内容是在教学了加法的运算定律及其相关简便运算后学习的,同时为后面的简便运算的学习做铺垫。我主要分以下几个环节:
1、复习。我首先让学生共同回忆了加法交换律和加法结合律,因为本节课的教学内容实际上和加法交换律、加法结合律的基本原理一样,只是所处的运算不同。我在教学中,就充分把握这一点,引导学生利用旧知迁移新知,自主探究出乘法的交换律和结合律。还进行了诸如“2×5,25×4,125×8,20×5,……”这样的口算题训练,其目的之一是通过这组口算题的练习,明确这些题目的共同特点是都是乘法运算,而且积是整十或整百或整千数,为后面运用乘法的交换律和结合律进行简便计算奠定了基础,其目的.之二是通过这一组乘法口算,揭示今天的学习内容。
2、探究新知。我主要是通过引导学生对主题图的观察,让学生探究解决“负责挖坑、种树的一共有多少人?”和“一共要浇多少桶水?”这两个问题,找出解决问题的相关信息,并会用不同的方法解答。在此基础之上,再引导学生通过对两种方法的比较,归纳总结出乘法交换律和乘法结合律。随后还引导学生学会运用刚刚学到的乘法交换律和乘法结合律进行简便计算,培养了学生学以致用的能力。
3、巩固练习主要引导学生经历解决问题的过程,让学生体验过程的同时感受到成功的喜悦。
当然,在教学过程中,也存在很多的不足,如:在进行乘法结合律的教学时,放手不够,可以充分放手,让学生自主探究出规律,学会利用学过的加法结合律迁移进行新知的学习;教学语言还要注意精炼,有时还是喜欢重复学生的回答。
《乘法结合律》的优秀教案3篇(扩展7)
——《乘法交换律和结合律》课后教学反思3篇
《乘法交换律和结合律》课后教学反思1
本节课的主要内容是经历探索乘法交换律、乘法结合律的过程,理解并用字母表示乘法交换律、结合律,能运用乘法交换律、结合律进行简便运算。教学重点是经历探索乘法交换律、乘法结合律的过程;难点是能运用乘法交换律、结合律进行简便运算。
上完这节课后,我的感触很深,我对这节课值得反思的东西还是挺多的。通过本节课的学习,基本达到教学目标。在课堂上我花更多的时间关注学生的学习过程,有意识地引导学生亲历“做数学”的过程。首先我在通过复习加法运算定律引入课题,然后让学生读图根据已知条件提出问题,对问题解答。这里的每个问题都可以列出两个不同的算式,因为是对同一问题的解答所以学生能够理解把这两个算式写成一个等式。之后让学生观察这个等式。提出问题“这个等式有什么特点”让学生思考,课后我觉得这个问题提的不是很清楚,如果问“等式的左右两有什么异同”学生也许会更容易的发现这一规律。
课前备课时,我觉得这两个定律都很简单,学生能够自己发现规律,现在想一想,我可以在讲乘法交换律时,让学生自己观察,而第二个乘法结合律稍有一点难度,可以采用小组讨论的形式解决问题。
各个环节的衔接不是很紧凑,本来后面还安排了两道应用题,但由于时间关系没来得及做。
《乘法交换律和结合律》课后教学反思2
授人以鱼,不如授人以渔,数学思想方法比数学知识本身更为重要。这节课是在学生已经掌握了乘法的计算方法的基础上进行教学的,通过学习,为学生今后运用规律进行简便计算,提高计算速度打下良好的基础。在教学过程中,我主要通过学生的观察、验证、归纳、运用等学习形式,采用启发式教学方式,由浅入深,从直观到规律,让学生去感受数学问题的探索性,培养学生学习数学的兴趣。教学时,我是先讲乘法交换律,再讲结合律,因为乘法交换律在学生以前的学习中都有渗透,而乘法结合律的生成也有赖于乘法交换律,所以先讲交换律可以以旧引新,为学生下一步学习结合律做好铺垫。
在这次教学中,也存在着许多不足。
一、语言不够严谨,要简洁、精炼。在叙述乘法结合律时,要紧扣乘法结合律的定义。
二、要注意一下细节问题。在学生讨论、举例时,要求孩子验证等式是否成立时,要求叙述得不够严谨。
三、针对学生错误的回答,解释得不是很到位,需要针对孩子的回答,来着重讲解。
由于经验的欠缺,对课堂的调控与把握还是做得不到位。有时候我的语言有些随意,不够正式,评价语言不够丰富,这是非常不足之处,既而需要我今后努力学习的方向。还有通过有其他老师的点评,让我明白老师的辅助作用及提问题的技巧性也很重要的,只有这样才能更好地达到课堂的有效教学。
今后的工作中,要多向以下几个方面努力:
1、多听课,多学习。学习优秀教师的新思想、新方法,改善课堂教学,提高课堂教学艺术和课堂效率。
2、加强同科组教师之间的沟通和交流,相互学习,取长补短,共同进步。
3、认真钻研教材,把握好教材的重点、难点、关键点、易混点,上课时才能做到心中有数。
《乘法交换律和结合律》课后教学反思3
本课时的教学内容是在教学了加法的运算定律及其相关简便运算后学习的,同时为后面的简便运算的学习做铺垫。我主要分以下几个环节:
1、复习。我首先让学生共同回忆了加法交换律和加法结合律,因为本节课的教学内容实际上和加法交换律、加法结合律的基本原理一样,只是所处的运算不同。我在教学中,就充分把握这一点,引导学生利用旧知迁移新知,自主探究出乘法的交换律和结合律。还进行了诸如“2×5,25×4,125×8,20×5,……”这样的口算题训练,其目的之一是通过这组口算题的练习,明确这些题目的`共同特点是都是乘法运算,而且积是整十或整百或整千数,为后面运用乘法的交换律和结合律进行简便计算奠定了基础,其目的之二是通过这一组乘法口算,揭示今天的学习内容。
2、探究新知。我主要是通过引导学生对主题图的观察,让学生探究解决“负责挖坑、种树的一共有多少人?”和“一共要浇多少桶水?”这两个问题,找出解决问题的相关信息,并会用不同的方法解答。在此基础之上,再引导学生通过对两种方法的比较,归纳总结出乘法交换律和乘法结合律。随后还引导学生学会运用刚刚学到的乘法交换律和乘法结合律进行简便计算,培养了学生学以致用的能力。
3、巩固练习主要引导学生经历解决问题的过程,让学生体验过程的同时感受到成功的喜悦。
当然,在教学过程中,也存在很多的不足,如:在进行乘法结合律的教学时,放手不够,可以充分放手,让学生自主探究出规律,学会利用学过的加法结合律迁移进行新知的学习;教学语言还要注意精炼,有时还是喜欢重复学生的回答。
《乘法结合律》的优秀教案3篇(扩展8)
——《加法交换律和结合律》说课稿3篇
《加法交换律和结合律》说课稿1
加法的交换律和结合律一课在人教版和苏教版中都是布置在四下上这个内容,在现在的苏教国标版教材也是布置在四年级。加法的交换律和结合律一课是属于第二学段中的数的运算中的一个重要内容。是在同学经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。同学从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。
新教材布置这两个运算律都是从同学熟悉的实际问题的解答引入,让同学通过观察、比较和分析,找到实际问题不同解法之间的一起特点,初步感受运算规律。然后让同学根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示动身现的规律,笼统、概括出运算律。教材有意识地让同*用已有经验,经历运算律的发现过程,让同学在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。新教材教学目标:
1、知识技能目标:
使同学理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。使同学在学习用符号、字母表示自身发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高笼统思维能力。
2、过程方法目标:
使同学经历探索加法交换律和结合律的过程,通过对熟悉的实际问的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:
使同学在数学活动中获得胜利的体验,进一步增强对数学的兴趣和信心,初步形成独立考虑和探究问题的意识、习惯。
教学重点:使同学理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使同学经历探索加法结合律和交换律的过程,发现并概括出运算律。
旧教材教学目标:
1、使同学理解并掌握加法交换律和结合律。
2、使同学理解和掌握加法交换律与加法结合律的异、同点,和其特点。
3、能利用加法的交换律进行加法的验算。
4、培养同学观察、概括、分析推理的能力。
教学重点:
引导同学概括、总结加法的加法交换律和结合律,会用字母表示。
教学难点:
在理解的基础上概括加法交换律和结合律,并能用文字和字母表示。
从新旧教材的目标比较以和例题设计中可以看出两者的"目标定位是不一样的。
1.旧教材的目标比较单一,主要的目标是知识技能方面的目标,如能口头表达加法交换律和结合律的意义,能用字母去表示,并会运用于验算。新教材的目标设定不只仅体现了知识技能方面的目标,更多的体现了过程和方法,情感态度方面的目标以和对于数学思想方法(不完全归纳法,符号感)的渗透。目标的设定是使各项目标与具体的学习相结合起来,成为一个有机的整体。
2.旧教材的目标体现不出教学的方法和同学的学法,而新教材的教学目标中能体现出一些具体的做法,如通过对熟悉的实际问的解决,经历探索加法交换律和结合律的过程,数学活动过程始终作为重点贯穿与教学中。
韩玲老师在上加法的交换律和结合律这课时,也充沛考虑到了新旧教材目标定位的不同。从课堂的引入韩老师就以最贴近生活的实际体育要闻十运会金牌数为题,一下子激起了同学学习的“兴奋点”,很自然的进入了后面的学习。在同学提出一些列的数学问题并列出算式之后,教师开始引导同学比较和分析这两道算式之间有什么相同的地方?有什么不同的地方?可以用等号连接吗?问:观察黑板上的这三道等式,你发现了什么规律?问:是不是其他的数之间也存在这种规律呢?请你再举一个这样的例子验证验证。举了这么多的例子,你找到规律了吗?这个规律用语言叙述比较长,你能够用自身喜欢的方式把这个规律简单明了地表达出来吗?(生口述,教师板书)在这样一个教师引导,同学进行比较、分析、举例、验证,表达的过程中,充沛发挥了同学主体的作用,也让同学感受到了发现规律的一般过程,从而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了同学自主探索,推导,验证的一个完整过程。
新教材的目标设定和教学过程,更多的体现了动态生成,寓数学考虑,探究,发现于一体的数学活动过程,教师只有掌握住了这个精髓才干去上好课,发展同学的综合能力。
《乘法结合律》的优秀教案3篇(扩展9)
——加法结合律教案3篇
加法结合律教案1
教学目标:
1、使学生探索加法运算律的过程,理解并掌握加法的交换律和结合律,并初步感知加法运算律的价值,发展运用意识。
2、学会用字母表示运算律,初步培养符号感和归纳、推理的能力。
3、在数学活动中,增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重难点:
理解并掌握运算律,并进行运算。
教学方法:
主动探索法
教学用具:
挂图、卡片
教学过程:
一、情景导入
1、谈话:同学们喜欢玩吗?玩什么?(师生做游戏进入新课)
2、出示情景图,仔细看图,读懂图中的信息。
(1)同桌间说信息,提加法问题。
(2)展示学习成果(师相机贴出问题卡)
(3)教师小结进入课题并板书:加法运算律
二、探索加法交换律
1、解决问题“跳绳的有多少人?”
(1)学生自练,展示学习成果。(指两名用不同方法计算的同学展示)
(2)说说自己的发现。(同桌交流,展示)
(3)师小结并板书28+17=17+28
(4)让学生举例(自练)展示教师相机板书
2、讨论交流:
A每组中的两个算式的异同。
B这几组算式是不是都具有这样的特点?
C说说自己发现的规律。(用自己的话或用自己喜欢的方式表示)
D用字母a、b表示两个加数,怎样表示?(师生交流总结并板书)
Ea+b=b+a(说说字母各表示什么?)
3、练习
357+218(计算并验算)
三、探索加法结合律
(1)出示问题二“参加活动的一共有多少人?”(学生自己练习,师巡视指用不同方法
计算的同学上台板演)
(2)让学生观察比较得出结果,师板书:(28+17)+23=28+(17+23)
交流自己的发现
(3)出示两组算式,观察并探索其中的规律。
用学习例1的方法总结出加法结合律,说说其中的字母及识字的含义。
四、巩固理解运算律
卡片出示课后“想想做做”中的练习题(自练,指名说)(同桌交流,展示)
五、总结提高
1、这节课我们学习了加法的哪两个运算律?说说自己的收获。
2、教师小结:
加法交换律和加法结合率都是加法运算中存在的规律,涉及到的数都是加数。加法交换率涉及到的加数只是交换了位置,和不变;加法结合率涉及到的加数位置不变,只是改变了运算顺序,和也不变。
六、布置作业
完成课后未完成的题目板书
运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)
加法结合律教案2
教材分析:
本教材是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律的基础。教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经理运算律的发现过程,让学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地构建知识。
“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算律的理解;接着通过题组对比和凑整等练习,为学习简便计算作适当渗透。
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:
配套课件。
教学过程:
一、课前谈话。
有牛顿因为看见苹果落地,进行思考,经过坚持不懈的努力,最后得出了万有引力定律这个伟大的成果。引导学生得出:要注意观察、思考生活中一些习以为常的问题,并从中探索出一些规律。
设计意图:由科学家从一个*常的现象得出伟大的发现,引导学生应注意观察身边的一些*常的、习以为常的现象,并从中的出一些规律,对学生进行良好学习习惯的教育。
二、教学加法交换律。
1、随着气候渐渐转凉,从下个月开始,同学们都将投入到冬季锻炼中去了。电脑出示第54页的例题,这是某个班级进行冬锻的情况,提问:从这张图片中,你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?根据学生的回答,电脑依次出示:①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人?
④参加活动的一共有多少人?
设计意图:从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生的发散性思维,并培养学生的问题意识。同时,也符合新课程“创造性使用教材”的理念。
2、今天这节课,我们就一起来研究其中的这两个问题:
在黑板上张贴:参加跳绳的一共有多少人?
参加活动的一共有多少人?
我们先来解决第一个问题:参加跳绳的一共有多少人?
3、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45,追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:17+28=45(人)
为什么这两个算式的结果一样?
4、你们能用一个符号把它们连接以来吗?教师继续板书:28+17=17+28
仔细地观察一下这两个算式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?
5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
6、我们再仔细的观察这几个算式,从中你们有什么发现?你们能用一个算式来表示你们的发现吗?
教师巡视,并作相应的辅导,在学生交流后板书出示:两个数相加,交换加数的位置,它们的和不变。并板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?
7、同学们都自己用自己的喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:a+b=b+a。
8、教师小结知识点:在很*常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书:加法交换律),学生齐读一遍。
小结研究方法:刚才我们在研究加法法交换律的时候,我们是怎样一步一步开展研究的?引导学生能得出:列式计算——观察思考——猜测验证——得出结论。
9、练习:
完成想想做做第一题前面两小题。
设计意图:教师是教学的组织者和引导者,而不仅仅是解题指导者。本环节的设计,层层递进,紧密围绕并运用好问题情境,师生之间积极互动,教师引导学生自己去发现规律,并学会用字母表示,最后还归纳出了研究方法,都让学生有一种成就感。
三、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?想想你为什么这样列式?学生练习,教师巡视指导。
3、学生回答,教师有意识地板书:
(28+17)+23=68(人)
28+(17+23)
(28+23)+17
28+(23+17)
(23+17)+28
23+(17+28)
让回答的同学说说这么列式是怎么思考的?
下面,我们就来针对这两个算式开展研究:(28+17)+2328+(17+23)
设计意图:本环节又是“用教材教”的一个很好体现,比较好地注意了关注学生的生成与教师预设之间的联系,并很好地引导到需要的算式。
4、根究研究方法,接下来我们应该进行哪一步?(观察思考)那你们观察一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:
(28+17)+23=28+(17+23)
5、电脑出示:下面的Ο里能填上等号吗?
(45+25)+13Ο45+(25+13)
(36+18)+22Ο36+(18+22)
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
6、看着黑板上的板书,你们从中有了什么新的发现?学生小组交流后大堂再交流,教师张贴:三个数相加,先把前两个数相加,再同第三个数相加,或者先把后两个数相加,再和第一个数相加,它们的和不变。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(a+b)+c=a+(b+c)
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
8、完成“想想做做”第1题的后面两个小题。
设计意图:通过引导学生运用得到的研究方法开展研究,由扶到放,初步培养学生探索和解决问题的能力和语言的组织能力。
四、巩固练习。
1、完成“想想做做”第2题。
第4小题引导学生发现是运用了加法交换律和加法结合律。
2、完成“想想做做”第3题第1行。
3、插入“朝三暮四”的故事,让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老头采用了加法交换律。
4、完成“想想做做”第4题。
使学生初步感受应用加法运算律可以使计算简便。
设计意图:几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。
五、课堂总结。
通过本节课的学习,你有什么新的收获?
设计意图:体现了教师的.主导作用和学生的主体作用,使学生在自己的整理总结中再次巩固了本节课的重难点。
板书设计:运算律
加法交换律加法结合律
28+17=45(人)17+28=45(人)(28+17)+2328+(17+23)
28+17=17+28=45+23=28+40
(学生说的算式)=68(人)=68(人)
(28+17)+23=28+(17+23)
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a(a+b)+c=a+(b+c)
加法结合律教案3
教学内容:
P28例1(加法交换律)P29/例2(加法结合律)
教学目标:
1.引导学生探究和理解加法交换律、结合律。
2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
教学过程:
一、主题图引入
观察主题图,根据条件提出问题
(1)李叔叔今天一共骑了多少千米?
(2)李叔叔三天一共骑了多少千米?
引导学生观察主题图
教师根据学生提出的问题板书。
二、新授
练习本上用自己的方法列出综合算式,解答黑板上问题。
教师巡视,找出课堂上需要的答案,找学生板演。
学生观察第一组算式,发现特点。
引导学生观察第一组算式,总结出:
40+56=56+40
试着再举出几个这样的例子。
根据学生的举例,进行板书。
通过这几组算式,你们发现了什么?
学生发现规律:两个加数交换位置,和不变。这叫做加法交换律。
教师根据学生的小结,板书。
你能用自己喜欢的方式表示出加法交换律吗?
板书:a+b=b+a
学生用多种形式表示。
符号表示:△+☆=☆+△
引导学生观察第二组算式,总结出:
(88+104+96)=88+(104+96)学生观察第二组算式,发现特点。
学生继续观察几组算式。
出示:
(69+172)+28
69+(172+28)
155+(145+207)
(155+145)+207
通过上面的几组算式,你们发现了什么?
学生总结观察到的规律。
教师板书:先把前两个数相加,或者先把后两个数相加,和不变。这叫做叫法结合律。
学生用自己喜欢的方式表示加法结合律。
符号表示:(△+☆)+○=△+(☆+○)
教师板书:
(a+b)+c=a+(b+c)
学生根据这两个运算定律,举一些生活中的例子。
三、巩固练习
P28/做一做
P31/4、1
四、小结
学生小结本节课学习的加法的运算定律。
今天这节课你们都有什么收获?
你能把这些运用于以后的学习中吗?
五、作业:P31/3
板书设计:
加法的运算定律
(1)李叔叔今天一共骑了多少千米?(2)李叔叔三天一共骑了多少千米?
40+56=96(千米)56+40=96(千米)88+104+96104+96+88
=192+96=200+88
=288(千米)=288(千米)
40+56=56+40(88+104)+96=88+(104+96)
┆(学生举例)(69+172)+28=69+(172+28)
两个加数交换位置,和不变。155+(145+207)=(155+145)+207
这叫做加法交换律。先把前两个数相加,或者先把后两个数相加,
和不变。这叫做加法结合律。
a+b=b+a(a+b)+c=a+(b+c)