欢迎来到专业的万有范文网平台! 工作总结 工作计划 心得体会 思想汇报 述职报告 教案设计 整改报告 事迹材料
当前位置:首页 > 教案设计 > 正文

完整高中数学教案7篇(完整文档)

时间:2023-03-16 14:25:08 浏览量:

作为一位杰出的教职工,时常需要用到教案,借助教案让教学工作更科学化。那要怎么写好教案呢?下面小编带来完整的高中数学教案7篇,希望大家喜欢。完整的高中数学教案篇1一、预习目标预习《*面向量应用举例》,下面是小编为大家整理的完整高中数学教案7篇(完整文档),供大家参考。

完整高中数学教案7篇(完整文档)

作为一位杰出的教职工,时常需要用到教案,借助教案让教学工作更科学化。那要怎么写好教案呢?下面小编带来完整的高中数学教案7篇,希望大家喜欢。

完整的高中数学教案篇1

一、预习目标

预习《*面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。

二、预习内容

阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:

1、例1如果不用向量的方法,还有其他证明方法吗?

2、利用向量方法解决*面几何问题的“三步曲”是什么?

3、例3中,

⑴为何值时,|F1|最小,最小值是多少?

⑵|F1|能等于|G|吗?为什么?

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。

课内探究学案

一、学习内容

1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决*面几何和解析几何中直线或线段的*行、垂直、相等、夹角和距离等问题。

2、运用向量的有关知识解决简单的物理问题。

二、学习过程

探究一:

(1)向量运算与几何中的结论"若,则,且所在直线*行或重合"相类比,你有什么体会?

(2)举出几个具有线性运算的几何实例。

例1、证明:*行四边形两条对角线的*方和等于四条边的*方和。

已知:*行四边形ABCD。

求证:

试用几何方法解决这个问题,利用向量的方法解决*面几何问题的“三步曲”?

(1)建立*面几何与向量的联系,

(2)通过向量运算,研究几何元素之间的关系,

(3)把运算结果“翻译”成几何关系。

例2,如图,*行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?

探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?

例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?

请同学们结合刚才这个问题,思考下面的问题:

⑴为何值时,|F1|最小,最小值是多少?

⑵|F1|能等于|G|吗?为什么?

例4如图,一条河的**行,河的宽度m,一艘船从A处出发到河对岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0。1min)?

变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。

三、反思总结

结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。

代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等*行、垂直等问题常用此法。

本节主要研究了用向量知识解决*面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。

完整的高中数学教案篇2

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数*用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

完整的高中数学教案篇3

教学目标

(1)使学生正确理解组合的意义,正确区分排列、组合问题;

(2)使学生掌握组合数的计算公式;

(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

教学重点难点

重点是组合的定义、组合数及组合数的公式;

难点是解组合的应用题.

教学过程设计

(-)导入新课

(教师活动)提出下列思考问题,打出字幕.

[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

(学生活动)讨论并回答.

答案提示:(1)排列;(2)组合.

[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

设计意图:组合与排列所研究的问题几乎是*行的.上面设计的问题目的是从排列知识中发现并提出新的问题.

(二)新课讲授

[提出问题 创设情境]

(教师活动)指导学生带着问题阅读课文.

[字幕]1.排列的定义是什么?

2.举例说明一个组合是什么?

3.一个组合与一个排列有何区别?

(学生活动)阅读回答.

(教师活动)对照课文,逐一评析.

设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

【归纳概括 建立新知】

(教师活动)承接上述问题的回答,展示下面知识.

[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

(学生活动)倾听、思索、记录.

(教师活动)提出思考问题.

[投影] 与 的关系如何?

(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

第2步,求每一个组合中 个元素的全排列数为 .

根据分步计数原理,得到

[字幕]公式1:

公式2:

(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

(三)小结

(师生活动)共同小结.

本节主要内容有

1.组合概念.

2.组合数计算的两个公式.

(四)布置作业

1.课本作业:习题10 3第1(1)、(4),3题.

2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

3.研究性题:

在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

(五)课后点评

在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

作业参考答案

2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.

3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.

探究活动

同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?

解 设四人分别为甲、乙、丙、丁,可从多种角度来解.

解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:

甲拿乙制作的贺卡时,则贺卡有3种分配方法.

甲拿丙制作的贺卡时,则贺卡有3种分配方法.

甲拿丁制作的贺卡时,则贺卡有3种分配方法.

由加法原理得,贺卡分配方法有3+3+3=9种.

解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.

正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).

逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).

完整的高中数学教案篇4

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及*面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

完整的高中数学教案篇5

内容分析:

1、 集合是中学数学的一个重要的基本概念

在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。

把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础

例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明

然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念

学习引言是引发学生的学习兴趣,使学生认识学习本章的意义

本节课的教学重点是集合的基本概念。

集合是集合论中的原始的、不定义的概念

在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识

教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集

”这句话,只是对集合概念的描述性说明。

教学过程:

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

定义:一般地,某些指定的对象集在一起就成为一个集合.

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

(2)正整数集:非负整数集内排除0的集,记作N_或N+,N_={1,2,3,…}

(3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}

(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集,记作N_或N+

Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写。

完整的高中数学教案篇6

教学目标

(1)理解四种命题的概念;

(2)理解四种命题之间的相互关系,能由原命题写出其他三种形式;

(3)理解一个命题的真假与其他三个命题真假间的关系;

(4)初步掌握反证法的概念及反证法证题的基本步骤;

(5)通过对四种命题之间关系的学习,培养学生逻辑推理能力;

(6)通过对四种命题的存在性和相对性的认识,进行辩证唯物主义观点教育;

(7)培养学生用反证法简单推理的技能,从而发展学生的思维能力.

教学重点和难点

重点:四种命题之间的关系;难点:反证法的运用.

教学过程设计

第一课时:四种命题

一、导入新课

【练习】1.把下列命题改写成“若p则q”的形式:

(l)同位角相等,两直线*行;

(2)正方形的四条边相等.

2.什么叫互逆命题?上述命题的逆命题是什么?

将命题写成“若p则q”的形式,关键是找到命题的条件p与q结论.

如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互道命题.

上述命题的道命题是“若一个四边形的四条边相等,则它是正方形”和“若两条直线*行,则同位角相等”.

值得指出的是原命题和逆命题是相对的.我们也可以把逆命题当成原命题,去求它的逆命题.

3.原命题真,逆命题一定真吗?

“同位角相等,两直线*行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:

(1)若同位角相等,则两直线*行;

(2)若一个四边形是正方形,则它的四条边相等.

设计意图:

通过复习旧知识,打下学习否命题、逆否命题的基础.

二、新课

【设问】命题“同位角相等,两条直线*行”除了能构成它的逆命题外,是否还可以构成其它形式的命题?

【讲述】可以将原命题的条件和结论分别否定,构成“同位角不相等,则两直线不*行”,这个命题叫原命题的否命题.

【提问】你能由原命题“正方形的四条边相等”构成它的否命题吗?

学生活动:

口答:若一个四边形不是正方形,则它的四条边不相等.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题.把其中一个命题叫做原命题,另一个命题叫做原命题的否命题.

若用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定.

【板书】原命题:若p则q;

否命题:若┐p则q┐.

【提问】原命题真,否命题一定真吗?举例说明?

学生活动:

讲论后回答:

原命题“同位角相等,两直线*行”真,它的否命题“同位角不相等,两直线不*行”不真.

原命题“正方形的四条边相等”真,它的否命题“若一个四边形不是正方形,则它的四条边不相等”不真.

由此可以得原命题真,它的否命题不一定真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成否命题及判断它们的真假,调动学生学习的积极性.

教师活动:

【提问】命题“同位角相等,两条直线*行”除了能构成它的逆命题和否命题外,还可以不可以构成别的命题?

学生活动:

讨论后回答

【总结】可以将这个命题的条件和结论互换后再分别将新的条件和结论分别否定构成命题“两条直线不*行,则同位角不相等”,这个命题叫原命题的逆否命题.

教师活动:

【提问】原命题“正方形的四条边相等”的逆否命题是什么?

学生活动:

口答:若一个四边形的四条边不相等,则不是正方形.

教师活动:

【讲述】一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题.把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题.

原命题是“若p则q”,则逆否命题为“若┐q则┐p.

【提问】“两条直线不*行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真.

教师活动:

【提问】原命题的真假与其他三种命题的真

假有什么关系?举例加以说明?

【总结】1.原命题为真,它的逆命题不一定为真.

2.原命题为真,它的否命题不一定为真.

3.原命题为真,它的逆否命题一定为真.

设计意图:

通过设问和讨论,让学生在自己举例中研究如何由原命题构成逆否命题及判断它们的真假,调动学生学的积极性.

教师活动:

三、课堂练习

1.若原命题是“若p则q”,其它三种命题的形式怎样表示?请写在方框内?

学生活动:笔答

教师活动:

2.根据上图所给出的箭头,写出箭头两头命题之间的关系?举例加以说明?

学生活动:讨论后回答

设计意图:

通过学生自己填图,使学生掌握四种命题的形式和它们之间的关系.

教师活动:

完整的高中数学教案篇7

一、教学目标

1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

4、初步培养学生反证法的数学思维。

二、教学分析

重点:四种命题;难点:四种命题的关系

1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

三、教学手段和方法(演示教学法和循序渐进导入法)

1、以故事形式入题

2、多媒体演示

四、教学过程

(一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

设计意图:创设情景,激发学生学习兴趣

(二)复习提问:

1.命题“同位角相等,两直线*行”的条件与结论各是什么?

2.把“同位角相等,两直线*行”看作原命题,它的逆命题是什么?

3.原命题真,逆命题一定真吗?

“同位角相等,两直线*行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

学生活动:

口答:

(1)若同位角相等,则两直线*行;

(2)若一个四边形是正方形,则它的四条边相等.

设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

(三)新课讲解:

1.命题“同位角相等,两直线*行”的条件是“同位角相等”,结论是“两直线*行”;如果把“同位角相等,两直线*行”看作原命题,它的逆命题就是“两直线*行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

2.把命题“同位角相等,两直线*行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不*行”,这个新命题就叫做原命题的否命题。

3.把命题“同位角相等,两直线*行”的条件与结论互相交换并同时否定,就得到新命题“两直线不*行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

(四)组织讨论:

让学生归纳什么是否命题,什么是逆否命题。

例1及例2

(五)课堂探究:“两条直线不*行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

学生活动:

讨论后回答

这两个逆否命题都真.

原命题真,逆否命题也真

引导学生讨论原命题的真假与其他三种命题的真

假有什么关系?举例加以说明,同学们踊跃发言。

(六)课堂小结:

1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

原命题若p则q;

逆命题若q则p;(交换原命题的条件和结论)

否命题,若¬p则¬q;(同时否定原命题的条件和结论)

逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

2、四种命题的关系

(1).原命题为真,它的逆命题不一定为真.

(2).原命题为真,它的否命题不一定为真.

(3).原命题为真,它的逆否命题一定为真

(七)回扣引入

分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

第一句:“该来的没来”

其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

同学们,生活中处处是数学,期待我们善于发现的眼睛

五、作业

1.设原命题是“若

断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判

2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假.

推荐访问:教案 高中数学 完整 完整高中数学教案7篇 完整的高中数学教案7篇扩展阅读 完整的高中数学教案7篇扩展阅读答案 完整的高中数学教案7篇扩展阅读题 完整的高中数学教案7篇扩展阅读理解